New monolithic chiral stationary phases for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals

by

Marwa Ahmed

A Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Australian Capital Territory, Australia

March 2015
Acknowledgments

Sincerest gratitude is expressed toward my primary supervisor, A/Prof. Dr. Ashraf Ghanem for firstly accepting me to join his project at the University of Canberra. Thanks are due for his continuous support and supervision throughout this research. It would have never been possible for this thesis to appear without his enormous support. Dr. Ghanem has also generously offered me extracurricular opportunities such as student secretary of the Royal Australian Chemical Institute (RACI), promotion of science events and teaching Chemistry courses for undergrads. These activities have significantly enriched my communication as well as academic skills.

My deepest gratitude is also expressed to the University of Canberra for offering me W J Weeden postgraduate research scholarship to pursue my PhD. Thanks are also due to the Schlumberger Foundation Faculty for the Future award.

Thanks are due to my co-supervisor Prof. Bill Maher for the wonderful support during the writing stage.

I am so grateful to the academic skills centre at the University of Canberra, Dr. Joelle Vandermensbrugghe and Dr. Linda Li for the wonderful workshops which assisted me in improving my writing from the early beginning.

I would like to thank CSIRO Materials Science and Engineering, NSW for the fruitful collaboration. Thanks are due to Dr. Khaled Mriziq, Eksigent (California, USA) for the gifted capillary columns used in Chapter 6.
My sincere appreciation is for Dr. Karsten Gömann, Central Science Laboratory, University of Tasmania for the SEM imaging.

My sincerest gratitude goes to my former and current lab colleagues, including Dr. Ahmed Abdellah, Rob, Frady, Viji, Haysam, Marina, Nana and Vijay who have been such a wonderful and a fully supportive team. I would like to thank Tomoyuki Okada, Kyoto Institute of Technology, for visiting the Chirality group and sharing his experience in preparing silica monoliths in Canberra.

No words can express my gratitude for my family overseas; my parents, my sisters and my brother and my great friends here in Australia and overseas. I would also like to thank Dr. Rosemary Purdie for the helpful comments on my writing. It has been one of the toughest challenges of my life and I am quite sure I would have never been able to pass through without your support and encouragement. Nonetheless, the knowledge and wisdom I have gained through these years are indefinitely precious and rewarding and had made me the person I hope you would be proud of.
List of publications

Papers in refereed journals and in preparation

Conference presentations

1. **Marwa Ahmed** and Ashraf Ghanem, “New silica bonded chiral β-cyclodextrin based capillary column for enantioselective separation of different classes of pharmaceuticals”, Chirality 2012, Fort Worth, Texas, USA.

2. **Marwa Ahmed** and Ashraf Ghanem, “Chiral and achiral polymer monolithic columns for separation of a mixture of different classes of pharmaceuticals using nano-HPLC”, HPLC 2012, Anaheim, USA.

Abstract

Pharmaceutical enantiomers have distinctive stereoselective binding interactions with the biological receptors and consequently enantiomers of a single drug may be considerably different in their pharmacokinetic and pharmacodynamic properties. As chiral drugs constitute approximately one-third of all drug sales worldwide, regulatory authorities such as the US Food and Drug Administration (FDA) have strict requirements to approve new chiral entities. Commercialization of enantiomerically pure drugs was previously considered a desirable challenge with many practical limitations. Nowadays, the technical advances of chiral separation and asymmetric synthesis allowed the availability of many single enantiomers on a commercial scale. Compared to the various available techniques to access enantiomerically pure drugs, separation of racemic mixtures has been demonstrated to be economically more feasible than diastereomeric crystallization or asymmetric synthesis to produce single enantiomers on a commercial scale.

Different separation techniques are available for the separation of racemic mixtures, such as Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC), Supercritical Fluid Chromatography (SFC), Capillary Electrophoresis (CE) and Capillary Electrochromatography (CEC). Among them, HPLC is the workhorse of chiral separations for industrial applications. Miniaturization of conventional HPLC to nano-HPLC enables high throughput, reduced sample size and small consumption of hazardous solvents and consequently the chiral separation can be achieved under environmentally friendly conditions.

Monolithic stationary phases have been known for the past three decades. They are composed of a single piece of porous material through which the mobile phase percolates leading to the
chromatographic separation. Monoliths enable high mobile phase flow rate and hence faster separation compared to the particle-packed columns.

This thesis is concerned with the development of new monolithic chiral stationary phases in hair-thin columns called capillary columns for the chiral separation of thirteen classes of racemic pharmaceuticals using nano-HPLC. In this research, three chiral selectors namely lipase, β-cyclodextrin and single-walled carbon nanotubes were used for the preparation of polymer- or silica-based monolithic chiral stationary phases in capillary format. Different approaches were adopted for the preparation of the capillary columns; columns’ reproducibility was also investigated to ensure their efficiency for industrial applications.
Table of contents

Acknowledgments .. iii
List of publications ... v
Abstract .. ix
List of Figures ... xvii
List of Tables ... xxix
Abbreviations ... xxxi
Form B ...
Certificate of Authorship of Thesis...

Chapter 1 .. 1
Monolithic capillary chiral stationary phases for the enantioselective separation of pharmaceuticals .. 1

1.1. The mystery of chirality ... 1
1.2. Chirality in drug design and development .. 2
 1.2.1. Implications of drug chirality ... 3
 1.2.2. Economic consequences for bioactive drug development 8
1.3. Different tools to access enantiomerically pure compounds 9
1.4. Chiral recognition principles ... 12
1.5. Enantioselective separation by means of nano-liquid chromatography (nano-LC) ... 17
1.6. Monolithic stationary phases ... 20
 1.6.1. Organic polymer-based monolithic columns .. 21
 1.6.2. Silica-based monolithic columns ... 30
 1.6.3. Organic polymer versus silica monoliths .. 32
1.7. Monolithic capillary chiral stationary phases .. 35
 1.7.1. Organic polymer-based monolithic CSPs ... 35
 1.7.2. Silica-based monolithic CSPs ... 42
1.8. Objectives and aims of the study ... 50
1.9. References .. 51
Chapter 2 ... 65
Experimental .. 65

2.1. Instrumentation .. 65
2.2. Reagents ... 66
 2.2.1. Chemicals used for polymer monoliths preparations ... 66
 2.2.2. Chemicals used for silica monoliths preparations ... 68
 2.2.3. HPLC solvents ... 68
 2.2.4. Chemicals used as analytes .. 69
 2.2.5. Other chemicals .. 74
 2.2.6. Investigated chiral selectors ... 75
2.3. Procedures .. 76
 2.3.1. Sample preparations ... 76
 2.3.2. Surface modification in fused silica capillaries for polymer monolith 76
 2.3.3. Synthesis of polymer monoliths in surface modified capillaries 77
 2.3.4. Surface modification in fused silica capillaries for silica monolith 79
 2.3.5. Preparation of silica monolith ... 79
 2.3.6. Scanning electron microscopy (SEM) ... 83
2.4. Calculations ... 83
 2.4.1. Retention factors ... 83
 2.4.2. Columns permeability based on Darcy’s law ... 84
 2.4.3. Column efficiency ... 84
 2.4.4. Efficiency of the enantioselective separation .. 85
2.5. References ... 86
Preparation of lipase-based new chiral stationary phases for enantioselective separation of pharmaceuticals using nano-LC

Part A: Establishing polymer monolith backbone

3A.1. Introduction

3A.2. Experimental

3A.3. Results and discussion

Part B: Induction of chirality, preparation of lipase-based CSPs

3B.1. Introduction

3B.2. Experimental

3B.3. Results and discussion
5.3. Results and discussion .. 197
 5.3.1. Characterizations of SWCNTs .. 197
 5.3.2. Polymer monoliths: preparation and characterization .. 199
 5.3.3. Enantioseparation of different classes of pharmaceutical racemates under multimodal elution 206
 5.3.4. Insights into the chiral recognition mechanism .. 215
5.4. Conclusions ... 217
5.5. References .. 218

Chapter 6 ... 221
Amylose tris-(3-chlorophenylcarbamate) for the enantioselective separation of pharmaceutical racemates using conventional HPLC and capillary-LC 221
 6.1. Introduction ... 221
 6.2. Experimental ... 223
 6.2.1. Instrumentation ... 223
 6.2.2. Sample preparations .. 223
 6.2.3. HPLC conditions ... 223
 6.3. Results and discussion .. 224
 6.3.1. Enantioselective separation of the pharmaceutical racemates ... 225
 6.3.2. Miniaturization of chiral separations, a future perspective ... 233
 6.4. Conclusions ... 234
 6.5. References ... 235

Chapter 7 ... 237
Conclusions and future directions ... 237
List of Figures

Figure 1.1: Schematic diagram showing the three-point receptor theory. Only an enantiomer with the correct spatial arrangements of groups will provide effective complimentary interactions with the receptor6 .. 3

Figure 1.2: Chemical structures of thalidomide enantiomers ... 3

Figure 1.3: Worldwide revenue of chiral technology market 2009-2016, reproduced from reference12 .. 5

Figure 1.4: Chemical structures of propranolol enantiomers .. 6

Figure 1.5: Chemical structures of quinine and quinidine .. 6

Figure 1.6: Chemical structures of dobutamine enantiomers ... 7

Figure 1.7: General chemical structures for profens enantiomers .. 7

Figure 1.8: Schematic diagram showing different methods to access enantiomerically pure compounds18 ... 9

Figure 1.9: Schematic diagram showing the 1933 Easson–Stedman model, reproduced with permission from references52,53. Priority sequence for groups around the tetrahedron carbon is a>b>c>d. The binding sites for a, b, and c are represented as A, B, and C. In the Easson–Stedman model (A), the R-enantiomer can bind at all three sites (perfect fit) and hence is capable of eliciting biological response. However in (B) the S-enantiomer binding is limited to a single contact point. The alternative possibility for S enantiomers is shown in (C), where steric hindrance of d blocks the binding due to the large distance (double arrow) between a-A, b-B and c-C. From the interior, the approach of the S enantiomers is also not allowed (D).. 13

Figure 1.10: The “three-point interaction model” adapted to be relevant to the interactions occurring in a theoretical liquid chromatographic system. Included are thermodynamic contributions to Gibbs free energy of the CS-SA complexation according to the equation: ΔG(CS-SA/binding) = ΔGsolv + ΔGint + ΔGconf + ΔGmotion. Proposed by and reproduced with
permission from reference. Shown is the interaction of ideal fit between S-SA and the non-
interaction of the R-SA... 15

Figure 1.11: Conventional HPLC a) with columns of 4.6 mm ID d) vs nano-LC b) with capillary
columns of 10-300 µm ID d). The droplet waste coming off the nano-LC system is also shown in
c) ... 18

Figure 1.12: Photograph of the porous monolith erected at the entrance of the Summer Palace Park,
Beijing, China, reproduced with permission from reference 76 .. 20

Figure 1.13: Schematic diagram showing the in situ preparation of polymer monolithic capillary
columns... 22

Figure 1.14: Examples of some monomers used in the preparation of organic polymer monoliths 82
.. 25

Figure 1.15: Examples of some cross-linkers used in the preparation of organic polymer
monoliths 82 .. 26

Figure 1.16: Examples of some free radical initiators used in the preparation of organic polymer
monolith 82 ... 27

Figure 1.17: Chromatographic separation of three model proteins using poly (butyl methacrylate-
co-ethylene dimethacrylate) capillary columns prepared by (A) thermal initiation and (B) photo
initiation. Dashed lines represent overall backpressure in the system, reproduced with permission
from reference 104 .. 28

Figure 1.18: Schematic diagram for the preparation of a silica monolith, reproduced with
permission from reference 76 .. 32

Figure 1.19: Comparison between the internal structure of silica-based (a) and polymer-based (b)
monolithic backbones, reproduced with permission from reference 90 .. 33

Figure 1.20: Scanning electron microscopy images of (a) hierarchically-structured silica-based
monolithic materials with macropores and a relatively thin skeleton containing permanent
mesopores, and (b) typical polymer-based monolithic materials with globular structures composed of cross-linked polymer, reproduced with permission from reference 77. ... 34

Figure 1.21: Schematic diagram showing MIP preparation. Functional monomers, cross-linker, template and radical initiator are mixed with the porogens. (1) The monomers form complexes with the template molecule (2) after polymerization the monomers are fixed in position by reaction with the cross-linker. (3) After extraction the recognition cavity, complementary to the template in size, shape, orientation and chemical functionality. The imprint is able to rebind the template with high selectivity, reproduced with permission from reference 133 ... 36

Figure 1.22: 2-hydroxyethylmethacrylate (N-L-valine-3,5-dianilide)carbamate functional monomer ... 37

Figure 1.23: N-methacryloyl-L-histidine methyl ester functional monomer 38

Figure 1.24: Schematic diagram for B-CD/GMA polymer monolithic columns, reproduced from reference 144 .. 39

Figure 1.25: Schematic diagram for β-CD polymer monolithic columns prepared via click chemistry, reproduced with permission from reference 146 ... 40

Figure 1.26: Schematic diagram for CD-GNP-modified monolithic columns, reproduced with permission from reference 150 .. 41

Figure 1.27: Enantioselective separation of hexobarbital on Chirasil-Dex monolith by rod-LC and rod-CEC, reproduced with permission from reference 156 ... 43

Figure 1.28: Schematic diagram showing the immobilization of CDPMC on a silica monolith, reproduced from reference 160 ... 45

Figure 1.29: Schematic diagram showing the preparation of β-CD-based silica monolith via one pot approach ... 46

Figure 1.30: Preparation of sulfonated β-CD silica monolith via post modification approach, reproduced from reference 43 ... 47
Figure 1.31: (S)-N-(4-allyloxy-3,5-dichlorobenzoyl)-2-amino-3,3-dimethylbutanephosphonic acid-based silica monolith, reproduced from reference 170 ... 48

Figure 1.32: Trans-(1S,2S)-2-(N-4-allyloxy-3,5-dichlorobenzoyl)aminocyclohexanesulfonic acid-based silica monolith, reproduced from reference 171 .. 48

Figure 2.1: Vinylization of the inner capillary wall to enable polymer anchor, reproduced with permission from reference 2 .. 76

Figure 2.2: Steps showing the preparation of polymer monolithic capillary columns: 78

Figure 2.3: Four-meter silica coils surface modified prior to sol-gel reaction 79

Figure 2.4: First heat treatment to induce mesopores formation carried out in the presence of urea solution. The program is finished once the temperature settles at 40°C 80

Figure 2.5: Second heat treatment: drying and sintering of the silica monolith. The program is finished once the temperature settles at 40°C ... 81

Figure 2.6: Steps showing the preparation of silica monolithic capillary columns: 79

Figure 2.7: Preparation of the capillary sections for SEM .. 83

Figure 3.1: Schematic diagram showing the composition of the monolith backbone 89

Figure 3.2: Scanning electron micrograph of M1 at 500x (left) and 25,000x (right) showing a homogenous porous monolithic structure with large macropores and microglobules 95

Figure 3.3: Scanning electron micrograph of M at 500x (left) and 25,000x (right) showing a dense monolithic structure with small macropores and microglobules .. 95

Figure 3.4: Scanning electron micrograph of M1P at 500x (left) and 5,000x (right) showing a highly dense monolithic structure with small macropores and microglobules 96

Figure 3.5: Column backpressure versus mobile phase flow rate of different prepared monoliths, mobile phase: acetonitrile/water 80:20 (v/v) ... 98
Figure 3.6: Retention factors of ketoprofen, naproxen and ibuprofen versus acetonitrile concentration, mobile phase acetonitrile: water (0.1% TFA), separated on M1 column (150 µm ID, 25 cm), flow rate 0.3 µL/min, injection volume 0.2 µL, UV 219 nm ... 100

Figure 3.7: Retention factors of propranolol, pindolol and acebutolol versus ammonium ion concentration, mobile phase ammonium acetate (5-25 mM, pH 7.5): acetonitrile (0.1% TFA) 70:30 v/v, separated on M1 column (150 µm ID, 25 cm), flow rate 0.3 µL/min, injection volume 0.2 µL, UV 254 nm .. 101

Figure 3.8: Separation of ketoprofen and propranolol on M1 column (150 µm ID, 25 cm), acetonitrile/water (0.1% TFA) 90:10 v/v, flow rate 0.3 µL/min, injection volume 0.2 µL, UV 219 nm ... 103

Figure 3.9: Separation of ketoprofen, cizolirtine and hexaconazole on M1 column (150 µm ID, 25 cm), acetonitrile/water (0.1% TFA) 85:15 v/v, separated on M1 column (25 cm, 150 µm ID), flow rate 0.3 µL/min, injection volume 0.2 µL, UV 219 nm ... 103

Figure 3.10: Chiral separation of ibuprofen on HSA-based silica monolith, reproduced with permission from reference 52 ... 106

Figure 3.11: Chiral separation of benzoin on OVM-encapsulated silica monolith, reproduced with permission from reference 62 ... 107

Figure 3.12: Schematic diagram showing the polymer composition of G1L monolith 110

Figure 3.13: Schematic diagram showing the preparation of the lipase-immobilized GSL monolith ... 112

Figure 3.14: Schematic diagram showing the encapsulation technique .. 113

Figure 3.15: Scanning electron micrograph of G1 at 500x (left) and 5,000x (right) showing a homogenous porous monolithic structure with sufficient surface area for protein immobilization .. 116

Figure 3.16: Scanning electron micrograph of G1L at 500x (top) and 25,000x (bottom) 118

Figure 3.17: Scanning electron micrograph of GSL at 500x (top) and 25,000x (bottom) 119
Figure 3.18: Scanning electron micrograph of M1 (top) vs M1L (bottom) at 500x (left) and 25,000x (right) showing a slight variation in the monolithic structure upon lipase encapsulation 120

Figure 3.19: Scanning electron micrograph of G3 at 500x (left) and 5,000x (right) 121

Figure 3.20: Enantioselective nano-LC separation of atenolol on a blank lipase-free GMA column (top) and GL1 capillary column (bottom) (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 30:70 v/v, UV: 240 nm, flow rate: 0.3 µL/min 123

Figure 3.21: Enantioselective nano-LC separation of arterenol on GL1 capillary column (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 30:70 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 124

Figure 3.22: Enantioselective nano-LC separation of chlorpheniramine on GSL capillary column (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 50:50 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 124

Figure 3.23: Enantioselective nano-LC separation of racemic-nomifensine overlaid on D-nomifensine on M1L (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 30:70 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 125

Figure 3.24: Enantioselective nano-LC separation of desmethylcizolirtine on M1L (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 30:70 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 126

Figure 3.25: Enantioselective nano-LC separation of chlorpheniramine on M1L (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 25:75 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 126

Figure 3.26: Enantioselective nano-LC separation of celiprolol on G2 (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 30:70 v/v, UV: 219 nm, flow rate: 0.3 µL/min 127

Figure 3.27: Enantioselective nano-LC separation of normetanephrine on a blank lipase-free GMA column (top) and on G2 (bottom) (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 30:70 v/v, UV: 240 nm, flow rate: 0.3 µL/min ... 128
Figure 3.28: Enantioselective nano-LC separation of chlorpheniramine plain silica column (top) and on SL (150 μm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 80:20 v/v, UV: 219 nm, flow rate: 0.3 μL/min

Figure 3.29: Enantioselective nano-LC separation of miconazole on SL (150 μm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 40:60 v/v, UV: 219 nm, flow rate: 0.3 μL/min

Figure 3.30: Chromatograms a-c showing the UV traces of the enantioselective nano-LC separation of atenolol on G2 capillary column (150 μm ID, 25 cm length). (a) Racemic atenolol, (b) (R)-atenolol, (c) co-injected (R)-atenolol with racemic atenolol: (R)+(R,S), Mobile phase: methanol/water (0.1% TFA) 30:70 v/v, UV: 240 nm, flow rate: 0.3 μL/min

Figure 3.31: Enantioselective nano-LC separation of sulconazole on G3 (150 μm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 50:50 v/v, UV: 240 nm, flow rate: 0.3 μL/min

Figure 3.32: Derivatization of G1L hydroxyl group into a hydrophobic derivative

Figure 3.33: Course of enantioselective hydrolysis of ibuprofen butanoate using CALB-immobilized capillary micro-bioreactor on Chiralpak IB (4.6 mm ID, 25 cm length). Mobile phase: n-hexane/TBME/TFA 90:10:0.1 v/v/v, UV: 219 nm, flow rate: 1 mL/min

Figure 4.1: Schematic diagram showing the structures of the most widely characterized CDs

Figure 4.2: Enantiomer separation of barbituric acids on a Chiralsil-Dex monolith by CEC, reproduced with permission from reference

Figure 4.3: Schematic diagram showing the preparation of 2,3,6-tris(phenylcarbamoyl)-β-CD-6-methacrylate

Figure 4.4: Schematic preparation of the anchor group MAS

Figure 4.5: Schematic diagram for the preparation of β-cyclodextrin-modified silica monolith

Figure 4.6: Schematic diagram showing the preparation of β-CD functionalized polymer monolith
Figure 4.7: Scanning electron micrograph of A1 at 500x (left) and 25,000x (right) showing a homogenous porous monolithic structure .. 162

Figure 4.8: Scanning electron micrograph of A2 at 500x (left) and 25,000x (right) showing a homogenous porous monolithic structure .. 162

Figure 4.9: Scanning electron micrograph of A3 at 500x (left) and 25,000x (right) showing a fine monolith with separation from the capillary walls ... 163

Figure 4.10: Overlay of A1 and A2 column backpressures versus flow rate 164

Figure 4.11: Scanning electron micrograph of bare silica monolithic column at 500x (top) and 25,000x (bottom) showing a homogenous porous monolithic structure 166

Figure 4.12: Evaluation of MAS coverage of the hybrid-type monolithic silica capillary (100 µm ID, 25 cm), mobile phase: THF/n-hexane 15:85 v/v, UV: 254 nm, flow rate 0.005 mL/min, 2µL injection volume of 1:1 toluene: benzanilide (in mobile phase). $k = 1.53$ 167

Figure 4.13: Scanning electron micrograph of MAS-modified monolithic column at 500x (top) and 25,000x (bottom) showing a homogenous porous monolithic structure without any apparent agglomeration ... 168

Figure 4.14: Scanning electron micrograph of SCD1 (a), SCD2 (b) and SCD3 (c) at 500x (left) and 25,000x (right) showing the morphology of the prepared monoliths 169

Figure 4.15: Enantioselective nano-LC separation of propranolol on the polymer-based monolithic capillary column A2 (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 10:90 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 171

Figure 4.16: Enantioselective nano-LC separation of tertatolol on the polymer-based monolithic capillary column A2 (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 10:90 v/v, UV: 270 nm, flow rate: 0.3 µL/min .. 171

Figure 4.17: Enantioselective nano-LC separation of metoprolol on the polymer-based monolithic capillary column A2 (150 µm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 10:90 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 172
Figure 4.18: Chromatograms a-c showing the UV traces of the enantioselective nano-LC separation of cizolirtine on A2 capillary column (150 μm ID, 25 cm length). (a) Racemic cizolirtine, (b) (S)-cizolirtine, (c) co-injected (S)-cizolirtine with racemic cizolirtine: (S)+(R,S), Mobile phase: methanol/water (0.1% TFA) 10:90 v/v, UV: 219 nm, flow rate: 0.3 μL/min 173

Figure 4.19: Chromatograms a-c showing the UV traces of the enantioselective nano-LC separation of alprenolol on A2 capillary column (150 μm ID, 25 cm length). (a) Racemic alprenolol, (b) (S)-alprenolol, (c) co-injected (S)-alprenolol with racemic alprenolol: (S)+(R,S), Mobile phase: methanol/water (0.1% TFA) 10:90 v/v, UV: 219 nm, flow rate: 0.3 μL/min 174

Figure 4.20: Enantioselective nano-LC separation of celiprolol on the polymer-based monolithic capillary column A2 (150 μm ID, 25 cm length). Mobile phase: methanol/water (0.1% TFA) 10:90 v/v, UV: 219 nm, flow rate: 0.3 μL/min .. 175

Figure 4.21: Enantioselective nano-LC separation of miconazole on the silica-based monolithic capillary column SCD2 (100 μm ID, 15 cm length). Mobile phase: methanol/water (0.1% TFA) 20:80 v/v, UV: 219 nm, flow rate: 0.3 μL/min .. 176

Figure 4.22: Enantioselective nano-LC separation of chlorpheniramine on the silica-based monolithic capillary column SCD1 (top) and SCD2 (bottom) (100 μm ID, 15 cm length). Mobile phase: methanol/water (0.1% TFA) 80:20 v/v, UV: 219 nm, flow rate: 0.3 μL/min 177

Figure 4.23: Enantioselective nano-LC separation of nomifensine on the silica-based monolithic capillary column SCD1 (top) and SCD2 (bottom) (100 μm ID, 15 cm length). Mobile phase: methanol/water (0.1% TFA) 80:20 v/v, UV: 219 nm, flow rate: 0.3 μL/min 178

Figure 4.24: Enantioselective nano-LC separation separation of celiprolol on the silica monolithic column prepared in KIT (100 μm, 15 cm), mobile phase: methanol/water (0.1% TFA) 55:45 v/v, UV: 219 nm, flow rate: 0.3 μL/min .. 180

Figure 4.25: Enantioselective nano-LC separation of alprenolol on the silica monolithic column prepared in KIT (100 μm, 15 cm), mobile phase: methanol/water (0.1% TFA) 55:45 v/v, UV: 219 nm, flow rate: 0.3 μL/min .. 180
Figure 4.26: Enantioselective nano-LC separation of eticlopride on the silica monolithic column prepared in KIT (100 µm, 15 cm), mobile phase: methanol/water (0.1% TFA) 55:45 v/v, UV: 270 nm, flow rate: 0.3 µL/min... 181

Figure 4.27: Enantioselective nano-LC separation of cizolirtine on the silica monolithic column prepared in KIT (100 µm, 15 cm), mobile phase: methanol/water (0.1% TFA) 55:45 v/v, UV: 219 nm, flow rate: 0.3 µL/min... 181

Figure 4.28: Chromatogram showing the loss of chiral discrimination of A2 for propranolol acetate, chromatographic conditions same as Figure 4.15.. 185

Figure 5.1: The helicity of SWCNTs defined by the roll-up vector (n,m) and yields two enantiomers P and M, reproduced from reference 11 .. 193

Figure 5.2: (a) SEM and (b) TEM images of SWCNTs. (c) Raman spectra of SWCNTs showing radial-breathing mode (RBM), D- and G-band regions. (d) XPS survey-scan of SWCNTs at (e) C 1s and (f) O 1s regions .. 198

Figure 5.3: Raman spectra of SWCNT-monolith (left) vs a plain monolith (right) 199

Figure 5.4: Scanning electron micrograph of a) PS (at 500x (top left) and 25,000x (top right)) vs b) SNTS (at 500x (bottom left) and 25,000x (bottom right)) showing small microglobules with rough surface.. 202

Figure 5.5: Scanning electron micrograph of a) PG (at 500x (top left) and 25,000x (top right)) vs b) GNTS (at 500x (bottom left) and 25,000x (bottom right) showing small microglobules with rough surface.. 203

Figure 5.6: Column backpressure vs mobile phase flow rate for SPMA-based columns............. 204

Figure 5.7: Column backpressure vs mobile phase flow rate for GMA-based columns 204

Figure 5.8: Enantioselective nano-LC separation of racemic sulconazole on GMA-columns with different SWCNTs concentrations (150 µm ID, 20 cm length) showing the effect of SWCNTs on the retention, α and Rs. Chromatographic conditions: mobile phase: methanol/water (0.1% TFA) 45:55 v/v, UV: 240 nm, flow rate: 0.3 µL/min... 207
Figure 5.9: Enantioselective nano-LC separation of chlorpheneramine on GNT50 (150 µm ID, 20 cm length). Mobile phase: methanol/water (0.1% TFA) 40:60 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 208

Figure 5.10: Enantioselective nano-LC separation of cizolirtine on GNT50 (150 µm ID, 20 cm length). Mobile phase: methanol/water (0.1% TFA) 40:60 v/v, UV: 219 nm, flow rate: 0.3 µL/min ... 208

Figure 5.11: Enantioselective nano-LC separation of miconazole on SNT10 (150 µm ID, 20 cm length). Mobile phase: methanol/water (0.1% TFA) 25:75 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 209

Figure 5.12: Enantioselective nano-LC separation of carbuterol on SNT10 (150 µm ID, 20 cm length). Mobile phase: methanol/water (0.1% TFA) 20:80 v/v, UV: 219 nm, flow rate: 0.3 µL/min ... 209

Figure 5.13: Enantioselective nano-LC separation of racemic-nomifensine overlaid on D-nomifensine on GNT50 (150 µm ID, 20 cm length). Mobile phase: methanol/water (0.1% TFA) 40:60 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 210

Figure 5.14: Chromatograms a-c showing the UV traces of the enantioselective nano-LC separation of celiprolol on GNT50 capillary column (150 µm ID, 20 cm length). (a) racemic celiprolol, (b) (S)-celiprolol, (c) co-injected (S)-celiprolol with racemic celiprolol: (S)+/(R,S), Mobile phase: methanol/water (0.1% TFA) 20:80 v/v, UV: 219 nm, flow rate: 0.3 µL/min.... 211

Figure 5.15: Enantioselective nano-LC separation of chlorpheneramine on SNT10 (150 µm ID, 20 cm length). Mobile phase: methanol/2-propanol (0.1% TFA) 50:50 v/v, UV: 219 nm, flow rate: 0.3 µL/min .. 213

Figure 5.16: Enantioselective nano-LC separation of nomifensine on SNT10 (150 µm ID, 20 cm length). Mobile phase: methanol/2-propanol (0.1% TFA) 80:20 v/v, UV: 240 nm, flow rate: 0.3 µL/min .. 213

Figure 5.17: Schematic diagram showing the speculative mechanism of interaction between chlorpheneramine and SWCNTs .. 216
Figure 6.1: Amylose tris-(3-chlorophenylcarbamate) ... 224

Figure 6.2: Enantioselective separation of racemic flavanone on chiralpak ID (4.6 mm ID, 250 mm length). Mobile phase: \textit{n}-hexane/2-propanol 90:10 v/v, UV: 254 nm, flow rate: 1 mL/min ... 226

Figure 6.3: Enantioselective separation of racemic carprofen on chiralpak ID (4.6 mm ID, 250 mm length). Mobile phase: \textit{n}-hexane/2-propanol 90:10 v/v, UV: 220 nm, flow rate: 1 mL/min. * is for 2-propanol ... 226

Figure 6.4: Enantioselective separation of racemic 1-acenaphthenol on chiralpak ID (4.6 mm ID, 250 mm length). Mobile phase: \textit{n}-hexane/2-propanol 90:10 v/v, UV: 254 nm, flow rate: 1 mL/min ... 227

Figure 6.5: Enantioselective separation of racemic 1-(2-chlorophenyl)ethanol on chiralpak ID (4.6 mm ID, 250 mm length). Mobile phase: \textit{n}-hexane/2-propanol 90:10 v/v, UV: 254 nm, flow rate: 1 mL/min ... 227

Figure 6.6: Enantioselective separation of racemic 6-hydroxyflavanone on chiralpak ID (4.6 mm ID, 250 mm length). Mobile phase: \textit{n}-hexane/2-propanol 90:10 v/v, UV: 254 nm, flow rate: 1 mL/min ... 228

Figure 6.7: Enantioselective separation of racemic thalidomide on chiralpak ID-3 (0.3 mm ID, 150 mm length). Mobile phase: \textit{n}-hexane/2-propanol 30:70 v/v, UV: 219 nm, flow rate: 10 µL/min. Adapted with permission from Marina Gwairgi (research project in Applied Science 2013, UC). * is for 2-propanol ... 228

Figure 6.8: Enantioselective separation of racemic 1-indanol on the conventional chiralpak ID (top) vs the capillary chiralpak ID-3 (bottom). Mobile phase: \textit{n}-hexane/2-propanol 90:10 v/v, UV: 254 nm, flow rate: 1 mL/min and 10 µL/min respectively ... 230

Figure 6.9: Enantioselective separation of racemic naftopidil on the capillary (top) vs the conventional chiralpak ID (bottom). Mobile phase: \textit{n}-hexane/2-propanol 90:10 v/v, UV: 219 nm, flow rate: 50 µL/min and 1 mL/min respectively. * is for 2-propanol ... 231
List of Tables

Table 1.1: Main groups of chiral selectors arranged according to their origin and separation techniques .. 11

Table 2.1: Chemicals used for methacrylate polymerization .. 66

Table 2.2: Chemicals used for silica monolith preparation and testing .. 68

Table 2.3: Organic solvents used for HPLC .. 68

Table 2.4: Chemical structures and suppliers of the investigated racemates .. 70

Table 2.5: Other chemicals used in this study ... 74

Table 2.6: Chiral selectors .. 75

Table 3.1: Porogen composition of the prepared monoliths .. 92

Table 3.2: Hydrodynamic flow properties of the monolithic columns .. 97

Table 3.3: Run-to-run, column-to-column and batch-to-batch repeatability of M1 column (25 cm, 150 µm ID) for the analysis of ketoprofen, cizolirtine and hexaconazole mixture, mobile phase: acetonitrile/water (0.1% TFA) 85:15 v/v, flow rate 0.3 µL/min, injection volume 0.2 µL, UV 219 nm .. 104

Table 3.4: Measured nitrogen content in different columns .. 121

Table 3.5: Chromatographic conditions, separation and resolution factors for the baseline/acceptably-resolved racemates .. 133

Table 4.1: Polymer composition used in the prepared monoliths .. 154

Table 4.2: Monomer concentration used in the prepared silica monoliths .. 157

Table 4.3: Porosity and performance of the prepared polymer monoliths using propranolol, mobile phase: methanol/water (0.1% TFA) 10/90, flow rate: 0.3 µL/min .. 160
Table 4.4: Run-to-run, column-to-column and batch-to-batch repeatability of the monolithic columns comparing the retention times of propanol, mobile phase: methanol/water (0.1% TFA) 10/90 v/v, flow rate: 0.3 μL/min ... 165

Table 4.5: Chromatographic conditions, separation and resolution factors for the baseline/acceptably-resolved racemates ... 182

Table 5.1: Retention and hydrodynamic flow properties of the prepared monolithic columns . 200

Table 5.2: Run-to-run, column-to-column and batch-to-batch repeatability of the SWCNTs-monolithic columns comparing the mean retention times of sulconazole 28 .. 205

Table 5.3: Chromatographic conditions, separation and resolution factors for the baseline-resolved racemates ... 214

Table 6.1: Chromatographic conditions, separation and resolution factors for the baseline resolved compounds on chiralpak ID (flow rate 1 mL/min) and ID-3 (flow rate 10 μL/min for aminoglutithimide and thalidomide and 50 μL/min for naftopidil) ... 232
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMPC</td>
<td>Amylose tris(3,5-dimethylphenylcarbamate)</td>
</tr>
<tr>
<td>AGP</td>
<td>α1-acid glycoprotein</td>
</tr>
<tr>
<td>AIBN</td>
<td>Azobisisobutyronitrile</td>
</tr>
<tr>
<td>B0</td>
<td>Column permeability</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BuMA</td>
<td>Butyl methacrylate</td>
</tr>
<tr>
<td>CAGR</td>
<td>Compound annual growth rate</td>
</tr>
<tr>
<td>CCC</td>
<td>Countercurrent Chromatography</td>
</tr>
<tr>
<td>CDMPC</td>
<td>Cellulose tris(3,5-dimethylphenyl-carbamate)</td>
</tr>
<tr>
<td>CDs</td>
<td>Cyclodextrins</td>
</tr>
<tr>
<td>CE</td>
<td>Capillary electrophoresis</td>
</tr>
<tr>
<td>CEC</td>
<td>Capillary electrochromatography</td>
</tr>
<tr>
<td>CLC</td>
<td>Capillary liquid chromatography</td>
</tr>
<tr>
<td>CMPA</td>
<td>Chiral mobile phase additive</td>
</tr>
<tr>
<td>CS</td>
<td>Chiral selector</td>
</tr>
<tr>
<td>CSP</td>
<td>Chiral stationary phase</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMPAP</td>
<td>2,2-Dimethoxy-2-phenyl-acetophenone</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>EDMA</td>
<td>Ethyleneglycol dimethacrylate</td>
</tr>
<tr>
<td>EEO</td>
<td>Enantiomer elution order</td>
</tr>
<tr>
<td>ee_p</td>
<td>Enantiomeric excess of product</td>
</tr>
<tr>
<td>ee_s</td>
<td>Enantiomeric excess of starting material</td>
</tr>
<tr>
<td>EIA</td>
<td>Exercise-induced asthma</td>
</tr>
<tr>
<td>ER</td>
<td>Eudismic ratio</td>
</tr>
<tr>
<td>εT</td>
<td>Total porosity</td>
</tr>
<tr>
<td>EtAC</td>
<td>Ethylacetate</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and drug administration</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GMA</td>
<td>Glycidyl methacrylate</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HSA</td>
<td>Human serum albumin</td>
</tr>
<tr>
<td>HOMs</td>
<td>Highly ordered mesoporous silica monoliths</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>ID</td>
<td>Inner diameter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>IOC</td>
<td>International Olympic committee</td>
</tr>
<tr>
<td>IPA</td>
<td>Isopropyl alcohol (2-propanol)</td>
</tr>
<tr>
<td>k</td>
<td>The retention factor</td>
</tr>
<tr>
<td>KIT</td>
<td>Kyoto Institute of Technology</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid chromatography</td>
</tr>
<tr>
<td>MIP</td>
<td>Molecularly imprinted polymer</td>
</tr>
<tr>
<td>MMA</td>
<td>Methyl methacrylate</td>
</tr>
<tr>
<td>MP</td>
<td>Mobile phase</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectroscopy</td>
</tr>
<tr>
<td>MBE</td>
<td>Methyl tert-butyl ether</td>
</tr>
<tr>
<td>MTMS</td>
<td>Methyltrimethoxysilane</td>
</tr>
<tr>
<td>N</td>
<td>Theoretical plate number</td>
</tr>
<tr>
<td>Nano-LC</td>
<td>Nano-liquid chromatography</td>
</tr>
<tr>
<td>NP</td>
<td>Normal phase</td>
</tr>
<tr>
<td>OD</td>
<td>Outer diameter</td>
</tr>
<tr>
<td>OVM</td>
<td>Ovomucoid</td>
</tr>
<tr>
<td>PEEK</td>
<td>Poly(ether-ether-ketone)</td>
</tr>
<tr>
<td>PO</td>
<td>Polar organic</td>
</tr>
<tr>
<td>POSC</td>
<td>Polar organic solvent chromatography</td>
</tr>
<tr>
<td>RP</td>
<td>Reversed phase</td>
</tr>
<tr>
<td>SA</td>
<td>Selectand</td>
</tr>
<tr>
<td>SCX</td>
<td>Strong cation exchange</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SFC</td>
<td>Supercritical fluid chromatography</td>
</tr>
<tr>
<td>SPMA</td>
<td>3-Sulfopropyl methacrylate</td>
</tr>
<tr>
<td>SWCNTs</td>
<td>Single-walled carbon nanotubes (SWCNTs)</td>
</tr>
<tr>
<td>TEOS</td>
<td>Tetraethoxysilane</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TMOS</td>
<td>Tetramethoxysilane</td>
</tr>
<tr>
<td>USD</td>
<td>US Dollars</td>
</tr>
<tr>
<td>VBTA</td>
<td>Vinylbenzyl trimethylammonium</td>
</tr>
<tr>
<td>w/w</td>
<td>weight/weight</td>
</tr>
<tr>
<td>γ-MAPS</td>
<td>3-(trimethoxysilyl)propyl methacrylate</td>
</tr>
</tbody>
</table>