Systematic Revision of the
Mountain Galaxias, *Galaxias olidus* Günther, 1866
Species Complex (Teleostei: Galaxiidae)
in Eastern Australia

Galaxias olidus Günther, 1866 - holotype

Tarmo Ain Raadik B.Sc. (Hons)

Institute for Applied Ecology, Division of Science and Design, University of Canberra, ACT
&
Ichthyology, Sciences Department, Museum Victoria
Submitted to the University of Canberra in fulfilment of the requirements of the Degree of Doctor of Philosophy

July 2011
Some of the morphological diversity in the *Galaxias olidus* sensu lato species complex.

(Image credits: Rudie Kuiter, Neil Armstrong, and Tarmo Raadik)
ABSTRACT

Australia is one of the world’s top megadiverse countries based on the number of species and levels of endemism of plants and animals, however, the continuing loss of biodiversity, particularly in freshwater environments, is one of the most serious environmental problems. The Australian freshwater fish fauna, defined as relatively well known, has been described as depauperate when compared with other land masses of similar size and climate. This disparity has been proposed as a consequence of relative differences in environmental and geological factors, and degree of isolation, however, it may also be due to differing taxonomic effort, with an overall decline in freshwater taxonomic research noted since the 1970s and a dramatic reduction in expertise since the mid 1980s.

Molecular research since the 1980s has detected species-level genetic diversity in many obligate freshwater fishes, all previously defined primarily on morphological assessments alone. None of these studies have yet been supported by morphological reappraisals to resolve the taxonomy of the species complexes, with some unresolved for over 20 years. The molecular data strongly suggest that the current taxonomic framework for Australian freshwater fishes is incomplete, under represents true levels of species diversity by at least 2–3 fold, and our basic knowledge of the number and diversity of freshwater fishes is largely deficient.

The Galaxiidae are arguably the most widespread family of Southern Hemisphere freshwater fish, and represent almost half of the species of southern-temperate affinity in Australia. They are relatively morphologically conservative and were considered reasonably well studied morphologically, though recent molecular studies have indicated significant species-level diversity in a nonmigratory species in southern New Zealand and one in South Africa.

The nonmigratory Mountain Galaxias, *Galaxias olidus*, of mainland Australia has a broad geographic range across discrete river systems, and is highly vulnerable to isolation and hence genetic divergence. A taxonomic history of multiple species consolidated into a single taxon, suggesting high levels of morphological variability, combined with recent morphological and ecological data, is strongly suggestive of *Galaxias olidus* constituting an unresolved, cryptic species complex. The aim of the current study is to investigate levels of genetic diversity within this obligate freshwater fish to assess species boundaries, to undertake a morphometric and meristic analysis of individuals to determine if genetically identified candidate taxa can be morphologically defined, and, if so, to revise the taxonomic framework of the complex, providing redescriptions of any valid nominal taxa and formal description of new taxa.

A comprehensive comparative dataset of study material was initially compiled following an evaluation of existing data and specimens. This material consisted of a small amount of existing
specimens from museum collections, but was supplemented by a large collection of fresh material from an extensive field sampling program which undertook intensive collecting at a fine spatial scale across the geographic range of the species.

Galaxias olidus sensu lato was not supported as a single, well-defined diagnosable species by allozyme analyses (54 loci), but was instead found to comprise a complex of 15 candidate species, most found in sympathy to parapatry (possibly recent sympathy), all diagnosable from one another by multiple fixed differences. Finer-scale genetic substructure was also evident within three candidate species, indicating genetically distinct subpopulations which, with minor exception, appeared to conform to drainage boundaries. Putative hybridization, though detected, appears to be uncommon amongst the candidate species, and was only found between three taxa-pairs, with one taxon common to all pairs.

An additional, though unexpected, result was the discovery of high levels of genetic heterogeneity within samples of *Galaxias brevipinnis* s.l. from mainland Australia used as outgroups, which suggests, for the first time, the presence of an unresolved species complex within this taxon.

Based on multivariate analysis the 15 allozymically defined candidate species in *Galaxias olidus* s.l. were able to be unequivocally diagnosed from each other by unique differences in their morphology, with the majority diagnosable by two independent datasets (morphometrics (29 characters) and meristics (17 characters)), and additional, less consistent morphological characters. When combined with significant molecular characters, each species could be identified on the basis of two, usually three, independent measures of diagnosability and four are considered distinct biological species in sympathy or parapatry and 11 as evolutionary species in allopatry, in the absence of evidence of recent sympathy or parapatry. *Galaxias olidus* s.s. remains the most variable taxon in the complex.

The combined approach of using multiple, independent lines of evidence provides the greatest chance of identifying robust and diagnosable species, particularly in cryptic species complexes where subtle morphological differences that are taxonomically important are masked by other phenotypic variation, and where traditional, morphologically based, studies often fail.

Following taxonomic reappraisal *Galaxias olidus* Günther (sensu strictu) is retained and redefined, two species previously synonymised with *G. olidus* (*Galaxias fuscus* Mack and *Galaxias ornatus* Castelnau) are revised and reinstated as valid species, and 12 new species are described. All taxa are closely related in a monophyletic lineage (to the exclusion of other described species investigated in the genus on mainland Australia), distinct from *Galaxias brevipinnis* and *Galaxias maculatus* (includes *G. occidentalis* and *G. rostratus*) lineages, and form a grouping of morphologically similar taxa designated as the *Galaxias olidus* complex.
Many morphological characters were found to overlap between species in this complex, and though all were useful in multivariate diagnosis of taxa (i.e. in combination provided discrimination in multidimensional space), many (e.g. meristic characters) were less useful as taxonomic characters in species descriptions. This is due to the high level of morphological conservatism in this complex of species, often with only subtle differences between taxa. Consequently, field-based diagnosis of species relies heavily on combinations of proportionate ratios of characters.

The identification of 15 species within the *Galaxias olidus* complex indicates substantial genetic divergence has occurred in this group of fishes in eastern Australia. The overall pattern of genetic substructuring within, and shallow to relatively deep divergence between species, is characteristic of this group having a long association with, and having undergone extensive evolution in isolation within, Australian freshwater drainages. In addition, the increased level of diversity found in the genus *Galaxias* (from this study and elsewhere) provides additional support for the long evolutionary history of the Galaxiidae.

The basic knowledge of species-level diversity is deficient for Australian freshwater fishes, and may be larger than previously suggested, with numbers of species in some taxa under represented by up to 15 fold. This lack of essential taxonomic knowledge is a fundamental and serious impediment to assessing species loss and in implementing effective strategies for biodiversity conservation. This is particularly critical in the Galaxiidae, where the spread of highly predatory alien salmonids in freshwater systems in the Southern Hemisphere has led to local extinctions and significantly altered galaxiid distributions, and is highly likely to have resulted in the extinction of undiscovered unique lineages, worthy of recognition as species, in small and remote catchments.

More broadly, the lack of knowledge of Australian freshwater fish diversity also compromise assessments of diversity and areas of high endemism at the global scale and confound efforts to define effective freshwater ecoregions for biodiversity conservation.
Table Of Contents

Abstract .. i

Certificate of Authorship of Thesis .. iv

Table Of Contents .. v

List of Tables .. viii

List of Figures ... xii

List of Abbreviations/Acronyms .. xviii

Statement of Originality ... xix

Copyright in relation to this thesis ... xix

Acknowledgements ... xx

1. Introduction ... 1
 1.1. Status of taxonomic knowledge of the Australian Freshwater Fish Fauna 1
 1.2. The Galaxiidae ... 6
 1.3. Review of Australian Galaxiidae Taxonomy ... 9
 1.4. *Galaxias olidus* Günther, 1866 .. 11
 1.5. Cryptic speciation and species delineation ... 15
 1.6. Study Overview and Objectives ... 18

2. Study Material .. 20
 2.1. Collation of Existing Data .. 20
 2.1.1. Assessment of Comparative Material .. 25
 2.2. Selection of Potential Sampling Sites .. 27
 2.3. Sampling Methods and Specimen Preservation .. 29
 2.4. Field Survey Results ... 30
 2.4.1. Morphotypes identified in *Galaxias olidus s.l.* ... 37

3. Allozyme Study ... 38
 3.1. Introduction ... 38
 3.2. Materials and Methods ... 40
 3.2.1. Allozyme electrophoresis ... 40
 3.2.2. Data Analysis .. 42
 3.3. Results .. 51
 3.3.1. Overview Study ... 52
 3.3.2. Major Genetic Groupings within *Galaxias olidus s.l.* 55
 3.3.3. Hybridization ... 91
 3.4. Discussion .. 93
 3.5. Conclusion ... 103

4. Morphological Study ... 104
 4.1. Introduction ... 104
 4.2. Materials and Methods ... 107
Appendices

Appendix 1 Chronological list of freshwater fish species recorded from Australia (excluding primarily estuarine and marine forms) described since 1950, including their evolutionary affinity.

Appendix 2 Valid species of extant Galaxiidae, including authority and distribution (to 1 January 2011).

Appendix 3 Text of original descriptions for species of Galaxias in the Galaxias olidus species complex.

Appendix 4 Museum collections consulted regarding holdings of Galaxiidae material.
8.5. Appendix 5 Locality, collection and sample size information for specimens of *Galaxias* used in the Allozyme (n = 838) and Morphological (n = 3907) studies (Chapters 3–4). ... 419

8.6. Appendix 6 Allozyme frequencies for regional subgroups of four diagnosable taxa, as identified using stepwise PCoA. ... 442

8.7. Appendix 7 Results of ANCOVAs on morphometric data for test of significance level of regression intercepts (α). ... 445

8.8. Appendix 8 Descriptive statistics for meristic data for the 15 allozymically-defined candidate species. .. 448

8.9. Appendix 9 Morphometric characters significantly different between pairs of candidate species, identified by ANOVA, with Bonferroni adjustment of P = 0.002 (* = P < 0.002; ** P < 0.001). .. 456

8.10. Appendix 10 Meristic characters significantly different between pairs of candidate species, identified by ANOVA, with Bonferroni adjustment of P = 0.003 (* = P < 0.003; ** P < 0.001). .. 477

8.11. Appendix 11 Text of redescription of *Galaxias findlayi* Macleay, 1882, by Ogilby, 1896. .. 490

8.12. Appendix 12 Additional non-type material examined but not measured (from Chapter 5 – Systematics). .. 493

8.13. Appendix 13 *Galaxias ‘guttatus’*. .. 504
LIST OF TABLES

Table 1-1 Approximate maximum altitudinal limits of species in the family Galaxiidae found at or above 1200 m in elevation. (TAS – Tasmania) ... 8

Table 1-2 Chronological summary of proposed valid species and taxonomic changes in the Galaxias olidus species group. Complete revisions are marked with an asterisk. Syn.– junior synonym. ... 12

Table 2-1 Summary of location and number of lots of preserved specimens of Galaxias olidus s.l. at the commencement of this study (pre 2001) .. 26

Table 2-2 Summary of field sampling sites visited (N), including number in Drainage Divisions (DD) and River Basins (RB) (refer to Figure 2-1), sampling year, number of dry and fishless sites, and number and altitudinal range of sites from which Galaxias olidus s.l. were recorded. ... 32

Table 2-3 Range of measured physical and water quality parameters summarised from all sites from which Galaxias olidus s.l. were collected. .. 36

Table 2-4 Summary of number of sites from which Galaxias spp. were recorded during this study and from which specimens were retained (including range of sample sizes) for three preservation techniques. .. 36

Table 3-1 Pairwise genetic distance measures between the Galaxias spp. taxa in the allozyme overview study. Lower left triangle = %FD; upper right triangle = unbiased Nei D. ... 54

Table 3-2 Allozyme frequencies for the 15 diagnosable candidate species and putative hybrids, as identified using stepwise PCoA. Taxa ordered on geographic distribution. Loci displaying fixed or near-fixed differences among taxa are highlighted in bold. For regional subgroup profiles see Appendix 6. Allozyme profiles of putative hybrids from five sites are also shown (bold, italic), including site number (Appendix 5, Figure 3-1). Alleles with a frequency of less than 0.5% in any taxon are not shown. For polymorphic loci, the frequencies of all but the rarer/rarest alleles are expressed as percentages and shown as superscripts (allowing the frequency of each rare allele to be calculated by subtraction from 100%). Alleles not separated by a comma all shared the frequency indicated. The maximum sample size for each taxon is shown in brackets. A dash indicates no genotype was assignable at this locus; invariant loci are underlined. .. 58

Table 3-3 Pairwise genetic distance measures between all candidate species in the detailed allozyme study. Taxa listed alphabetically. Lower left triangle = %FD; upper right triangle = unbiased Nei D. ... 63

Table 3-4 Pairwise genetic distance measures between all candidate species (including regional subgroups) in the allozyme detailed study. Taxa listed alphabetically. Lower left triangle = %FD; upper right triangle = unbiased Nei D. ... 66

Table 3-5 Summary of the 15 candidate species identified in the detailed allozyme study, including PCoA genetic cluster code (see above), taxon name, distribution (letter = Drainage Division, numbers = River Basins; refer to Figure 2-1) and number of sample sites (see Appendix 5). ... 86

Table 3-6 Summary of overall genetic distance measures between taxa for the 15 candidate species identified in the detailed allozyme analysis, including taxon name, PCoA cluster code, %FD and Nei D (average and range). (FD) = equivalent number of diagnostic allozyme loci. ... 90

Table 3-7 Summary of overall genetic distance measures (average and range) within candidate species with sub-regional groups (see Table 3-4) in the allozyme analysis. (FD) = equivalent number of diagnostic allozyme loci. ... 90
Table 3-8 Comparison of genotypes of three putative ‘olidus’ x ‘oliros’ hybrid fish with allele frequencies of parental taxa in the region of overlap (DD IV; RB 3–5). Only loci displaying a major difference in allele frequency (Δp > 50%) between the parental taxa are shown. For these loci, the genotypes displayed by the three genetically-intermediate fish (as defined in the original PCO of all 838 fish, see Figure 3-3) are characterized as either ‘olidus’-like (highlighted in green), or ‘oliros’-like (highlighted in blue). .. 92

Table 4-1 Number of individuals, including number of populations from which they were collected (in brackets), of each of the 15 candidate taxa defined in the allozyme study (see Table 3-5), used in the morphometric and meristic analyses, including taxon code and name. ... 109

Table 4-2 Description of morphometric characters measured (refer to Figure 4-1 and Figure 4-2). .. 111

Table 4-3 Description of 17 meristic characters enumerated in this study. See text for more detail. .. 115

Table 4-4 Regression coefficients (β) for 26 morphometric characters measured from Galaxias olidus s.l., excluding length measurements LCF and SL, derived from one-way ANCOVA. .. 122

Table 4-5 Summary of results of pair-wise diagnoses between allozyme identified candidate taxa based on morphometric data ordinated in multidimensional space: D – successful discrimination in DFA (above 80 %) using full dataset; D² – successful discrimination in DFA using regional data; P – diagnosable in PCA using full dataset; %P – % taxon successfully discriminated from others in PCA; %ov – overall % successful discrimination of taxon from others. Values in upper triangle represent overall % correctly classified in DFA (cross validated) or values for % total variability explained in PC1 (top) and PC2 (bottom). ... 131

Table 4-6 Summary table of results of pair-wise diagnoses between allozyme identified candidate taxa based on meristic data ordinated in multidimensional space: D – successful discrimination in DFA (above 80 %) using full dataset; D² – successfully discriminated in DFA at a regional level; N – poor discrimination in DFA (< 80 %); P – diagnosable in PCA using full dataset; %P – % taxon successfully discriminated from others in PCA; %ov – overall % successful discrimination of taxon from others. Values in upper triangle represent overall % correctly classified in DFA (cross validated) or values for % total variability explained in PC1 (top) and PC2 (bottom). Squares indicate DFA values below 80 % threshold... 132

Table 4-7 Summary table of morphometric characters which discriminate within pair-wise diagnoses between allozyme identified candidate taxa. Upper triangle – three best discriminating characters from PC1 and/or PC2; lower triangle – discriminatory characters in DFA. All variables listed in order of decreasing importance. 134

Table 4-8 Summary table of meristic characters which discriminate within pair-wise diagnoses between allozyme identified candidate taxa. Upper triangle – three best discriminatory characters from PC1 and/or PC2; Lower Triangle – discriminatory characters in DFA. All variables listed in order of decreasing importance 136

Table 4-9 Summary of morphological characters significantly different in pair-wise comparisons in ANOVA, and contributing most to ordination in PCA or discrimination in DFA, including number of observations (N) and ranked from 1 to 10 based on frequency of occurrence. Asterisks indicate the 10 most important characters in both datasets, based on combined ranks. Data from Table 4-7, Table 4-8, and Appendices 8 and 9. See Table 4-2 and Table 4-3 for morphometric and meristic codes. ... 138

Table 4-10 Summary of modal count (top), median (middle) and mean (bottom) of 17 meristic characters for each candidate species. See Table 4-1 for candidate taxon codes. Meristic character codes – see Table 4-3 (Char = character; Vert = Vertebrae). 141

Table 4-11 Degree of discrimination between selected pairs of candidate taxa, based on morphometric and meristic data, found in sympathy (SYMP) or where distributions
are currently allopatric (ALLOP) but are in the same river basin. P – successful discrimination in PCA; D or D^8 – successful discrimination in DFA (whole dataset or regional dataset), including % of individuals correctly classified overall; ND – unsuccessful discrimination in PCA or DFA. Distribution given as Drainage Division (roman numerals) followed by River Basin(s) numbers – see Figure 2-1 for names and locations.

Table 4-12 Summary of the mean and range (expressed as % SL) of length of pyloric caeca between candidate species, including % frequency of number of caeca. (N – number of pyloric caeca or individuals examined; modal counts in bold). 143

Table 4-13 Summary statistics for the position of the origin of the anal fin as a proportional setback from the origin of the dorsal fin, from the direct measurement DF–AF (see Table 4-2 and Figure 4-1). Values expressed as percentages .. 145

Table 4-14 Summary of the presence of additional morphological characters in the 15 candidate species considered of secondary importance in discriminating between some candidate taxon-pairs. Y – usually present; Y# – very occasionally present......... 148

Table 5-1 Variation in segmented dorsal fin rays in species in the *Galaxias olidus* complex (total – branched + unbranched rays; * – holotype)... 174

Table 5-2 Variation in segmented anal fin rays in species in the *Galaxias olidus* complex (total – branched + unbranched rays; * – holotype)... 175

Table 5-3 Variation in segmented pectoral fin rays in species in the *Galaxias olidus* complex (total – branched + unbranched rays; * – holotype). ... 176

Table 5-4 Variation in segmented pelvic fin and principal caudal fin rays in species in the *Galaxias olidus* complex (total – all rakers on first Gill arch; lower – rakers on lower limb + raker in angle; upper – rakers on upper limb; * – holotype). ... 178

Table 5-5 Variation in gill raker number in species in the *Galaxias olidus* complex (total – all rakers on first Gill arch; lower – rakers on lower limb + raker in angle; upper – rakers on upper limb; * – holotype). ... 179

Table 5-6 Variation in number of vertebrae and pyloric caeca in species in the *Galaxias olidus* complex (* – holotype)... 179

Table 5-7 Summary of meristic variation in *Galaxias aequipinnis* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens. 182

Table 5-8 Morphometric variation in *Galaxias aequipinnis* (values are percentages of denominators in ratios, except for LCF and SL). 183

Table 5-9 Summary of meristic variation in *Galaxias arcanus* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens........ 194

Table 5-10 Morphometric variation in *Galaxias arcanus* (values are percentages of denominators in ratios, except for LCF and SL). 195

Table 5-11 Summary of meristic variation in *Galaxias brevicaudus* (T – total; B – branched; L – lower limb; S – single; U – upper limb). 207

Table 5-12 Morphometric variation in *Galaxias brevicaudus* (values are percentages of denominators in ratios, except for LCF and SL). 208

Table 5-13 Summary of meristic variation in *Galaxias fuscus* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens........ 217

Table 5-14 Morphometric variation in *Galaxias fuscus* (values are percentages of denominators in ratios, except for LCF and SL). Excludes selected measurements for the holotype, and all those of the paratype, which have been affected by shrinkage........ 218

Table 5-15 Summary of meristic variation in *Galaxias gunaikurnai* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens. 230

Table 5-16 Morphometric variation in *Galaxias gunaikurnai* (values are percentages of denominators in ratios, except for LCF and SL). 231

Table 5-17 Summary of meristic variation in *Galaxias lanceolatus* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens. 240
Table 5-18 Morphometric variation in *Galaxias lanceolatus* (values are percentages of denominators in ratios, except for LCF and SL). .. 241

Table 5-19 Summary of meristic variation in *Galaxias longifundus* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens. 247

Table 5-20 Morphometric variation in *Galaxias longifundus* (values are percentages of denominators in ratios, except for LCF and SL). .. 248

Table 5-21 Summary of meristic variation in *Galaxias mcdowalli* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens. 255

Table 5-22 Morphometric variation in *Galaxias mcdowalli* (values are percentages of denominators in ratios, except for LCF and SL). .. 256

Table 5-23 Summary of meristic variation in *Galaxias mungadhan*; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens. 264

Table 5-24 Morphometric variation in *Galaxias mungadhan* (values are percentages of denominators in ratios, except for LCF and SL). .. 265

Table 5-25 Summary of meristic variation in *Galaxias olidus* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens. 283

Table 5-26 Morphometric variation in *Galaxias olidus* (values are percentages of denominators in ratios, except for LCF and SL). .. 284

Table 5-27 Summary of meristic variation in *Galaxias oliros* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens. 304

Table 5-28 Morphometric variation in *Galaxias oliros* (values are percentages of denominators in ratios, except for LCF and SL). .. 305

Table 5-29 Summary of meristic variation in *Galaxias ornatus* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens. 320

Table 5-30 Morphometric variation in *Galaxias ornatus* (values are percentages of denominators in ratios, except for LCF and SL). .. 321

Table 5-31 Summary of meristic variation in *Galaxias supremus* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % and 100 % of specimens. 333

Table 5-32 Morphometric variation in *Galaxias supremus* (values are percentages of denominators in ratios, except for LCF and SL). .. 334

Table 5-33 Summary of meristic variation in *Galaxias tantangara* (T – total; B – branched; L – lower limb; S – single; U – upper limb). .. 343

Table 5-34 Morphometric variation in *Galaxias tantangara* (values are percentages of denominators in ratios, except for LCF and SL). .. 344

Table 5-35 Summary of meristic variation in *Galaxias terenasus* (T – total; B – branched; L – lower limb; S – single; U – upper limb). Range in 90 % of values. 353

Table 5-36 Morphometric variation in *Galaxias terenasus* (values are percentages of denominators in ratios, except for LCF and SL). .. 354

Table 5-37 Revised list of Australian Galaxiidae, including Australian, mainland and Tasmanian endemism. (* – added from this study; Y = yes; m – mainland Australia; T – Tasmania). .. 364
LIST OF FIGURES

Figure 1-1 Total number and cumulative total of valid Indo-Pacific and Southern-Temperate derived Australian freshwater fish species described each decade (1770s–2009)........ 3
Figure 1-2 Number of valid Indo-Pacific and Southern-Temperate derived Australian freshwater fish species described each decade (1770s–2009)... 3
Figure 2-1 Codes and names of Drainage Divisions (bold) and River Basins of interest in the area of this study in southeastern Australia. Drainage Divisions and River Basins as defined by the AWRC (1976).. 21
Figure 2-2 Proposed freshwater fish biogeographical major provinces and regions (groups of river basins) (adapted from Unmack 2001). Continental shelf drainage patterns exposed under low sea-levels also indicted. Area of interest to this study outlined and regional codes defined... 22
Figure 2-3 Galaxias olidus s.l. distribution records pre 1978, indicating sites from which samples were used in the study by McDowall and Frankenber (1981).................................. 24
Figure 2-4 Field sampling sites in southeastern Australia, indicating A) dry sites and B) sites from which collections of Galaxias olidus s.l. were made.. 34
Figure 3-1 Geographic relationship of Galaxias olidus s.l. samples used in the allozyme electrophoresis analysis.. 43
Figure 3-2 Neighbour Joining tree depicting the genetic relationships among the ingroup Galaxias olidus species complex taxa and selected outgroup Galaxis spp., based on pairwise Nei D values... 53
Figure 3-3 Scatterplot of the first and second dimensions in the PCoA of the 838 individuals in the initial allozyme detailed study. .. 57
Figure 3-4 Scatterplot of the first (14 % explained) and second (8 % explained) dimensions in the PCoA of the 164 individuals in the genetic group A (‘oliros’) identified in the allozyme detailed study (see Figure 3-3). .. 57
Figure 3-5 Scatterplot of the first (16 % explained) and second (9 % explained) dimensions in the PCoA of the 671 individuals in the composite genetic group CG1 (see Figure 3-3) from the allozyme overview study. .. 64
Figure 3-6 Scatterplot of the first (56 % explained) and second (7 % explained) dimensions in the PCoA of the 60 individuals in the genetic groups B (‘riffle’ taxon N = 26) and C (‘fuscus’ taxon) identified in the allozyme detailed study (see Figure 3-5). 64
Figure 3-7 Scatterplot of the first (36 % explained) and second (23 % explained) dimensions in the PCoA of the 19 individuals in the genetic group D (‘genoa’ taxon) identified in the allozyme detailed study (see Figure 3-5).. 65
Figure 3-8 Scatterplot of the first (16 % explained) and second (7 % explained) dimensions in the PCoA of the 591 individuals in genetic group CG2 (see Figure 3-5) from the allozyme overview study. .. 65
Figure 3-9 Scatterplot of the first (17 % explained) and second (7 % explained) dimensions in the PCoA of 584 individuals in the composite genetic group CG3 from the detailed allozyme study (see Figure 3-8). ... 68
Figure 3-10 Scatterplot of the first (14 % explained) and second (8 % explained) dimensions in the PCoA of the 216 individuals in the ‘Northern’ allozyme regional study........ 69
Figure 3-11 Scatterplot of the first (14 % explained) and second (7 % explained) dimensions in the PCoA of the 210 individuals of ‘olidus’ in the composite genetic group CG4 (see Figure 3-10) in the ‘Northern’ allozyme regional study.......................... 69
Figure 3-12 Scatterplot of the first (13 % explained) and second (8 % explained) dimensions in the PCoA of the 79 individuals of ‘olidus’ A in the SEC portion of genetic group CG4 (see Figure 3-10) of the ‘Northern’ allozyme regional study. .. 70

Figure 3-13 Scatterplot of the first (10 % explained) and second (7 % explained) dimensions in the PCoA of the 131 individuals of ‘olidus’ in the MDB portion of composite genetic group CG4 (see Figure 3-10) of the ‘Northern’ allozyme regional study. 70

Figure 3-14 Scatterplot of the first (16 % explained) and second (10 % explained) dimensions in the PCoA of the 388 individuals in the ‘Central/South-eastern’ allozyme regional study ... 71

Figure 3-15 Scatterplot of the first (27 % explained) and second (9 % explained) dimensions in the PCoA of the 131 individuals in cluster G (‘bass’) and a portion of cluster CG5 in the ‘Central/South-eastern’ allozyme regional study (see Figure 3-14) 73

Figure 3-16 Scatterplot of the first (13 % explained) and second (8 % explained) dimensions in the PCoA of the 251 individuals in genetic group CG5 from the ‘Central/South-eastern’ allozyme regional study (see Figure 3-14). .. 73

Figure 3-17 Scatterplot of the first (11 % explained) and second (9 % explained) dimensions in the PCoA of the 230 individuals in the composite genetic group CG6 from the ‘Central/South-eastern’ allozyme regional study (see Figure 3-16) .. 75

Figure 3-18 Scatterplot of the first (21 % explained) and second (20 % explained) dimensions in the PCoA of the 19 individuals in the genetic group K (‘kosciousko’ taxon) and Hyb3 (N = 5) cluster from Figure 3-17 indicating the presence of genetic substructure within ‘kosciousko’. .. 75

Figure 3-19 Scatterplot of the first (11 % explained) and second (6 % explained) dimensions in the PCoA of the 202 individuals in the composite genetic group CG7 from the ‘Central/South-eastern’ allozyme regional study (see Figure 3-17) .. 77

Figure 3-20 Scatterplot of the first (12 % explained) and second (5 % explained) dimensions in the PCoA of the 192 individuals representing ‘olidus’ in the composite genetic group CG8 from the ‘Central/South-eastern’ allozyme regional study (see Figure 3-19) .. 77

Figure 3–20a **Figure 3-20a** Scatterplot of the first (11 % explained) and second (5 % explained) dimensions in the PCoA of the 68 individuals of ‘olidus’ in the MDB portion of the composite genetic group CG4 (see Figure 3-10) of the ‘Northern’ allozyme regional study, with individuals representing ‘olidus’ D (see Figure 3-20) removed

Figure 3-21 Scatterplot of the first (47 % explained) and second (15 % explained) dimensions in the PCoA of the 52 individuals in the ‘South-eastern’ allozyme regional study (SEC, 21–22). ... 78

Figure 3-22 Scatterplot of the first (49 % explained) and second (7 % explained) dimensions in the PCoA of the 82 individuals in the ‘South Australian’ allozyme regional study. 79

Figure 3-23 Scatterplot of the first (11 % explained) and second (8 % explained) dimensions in the PCoA of the 394 individuals representing ‘olidus’ in the allozyme... 79

Figure 3-24 UPGMA dendrogram based on pairwise % FD values among taxa and their regional subgroups. ... 83

Figure 3-25 NJ tree based on pairwise Nei D values among taxa and their regional subgroups... 84

Figure 4-1 *Galaxias* body and fin morphometric measurements. .. 112

Figure 4-2 *Galaxias* head morphometric measurements.. 113

Figure 4-3 *Galaxias olidus* s.l. positive radiograph showing vertebral column and (inset) three fused vertebrae (underlined). hy – hypural; ns – neural spine; sn – supra neural; v1 – first vertebra.. 117

Figure 4-4 Scatterplot of factor scores of first (PC1) and second (PC2) principal components of an initial PCA of 1963 individuals from all 15 allozyme-defined candidate taxa based on morphometric data.. 126
Figure 4-5 Scatterplot of factor scores of first (PC1) and second (PC2) principal components of an initial PCA of 3389 individuals from all 15 allozyme-defined candidate taxa based on meristic data. ... 127

Figure 4-6 Scatterplot of factor scores of first (PC1) and second (PC2) principal components of a PCA on a pair-wise comparison using morphometric data between ‘arte’ (circles) and ‘dargo’ (squares) candidate species. ... 128

Figure 4-7 Scatterplot of factor scores of first (PC1) and second (PC2) principal components of a PCA on a pair-wise comparison using meristic data between ‘genoa’ (circles) and ‘rodger’ (squares) candidate species. ... 129

Figure 4-8 a–c. Cephalic sensory pore system (open) and cutaneous sensory papillae (closed) of *Galaxias* spp. .. 147

Figure 5-1 *Galaxias aequipinnis*, holotype, NMV A.30565-2, 79.8 mm LCF, Arte River, Glen Arte Road, W of Club Terrace, Murrungower State Forest, Victoria: A) line drawing; B) image of preserved specimen ... 185

Figure 5-2 *Galaxias aequipinnis*, collected at the type locality with the holotype, 25 February 2002; ~ 70 mm LCF. .. 185

Figure 5-3 Distribution of *Galaxias aequipinnis* (open circles), *Galaxias brevicaudus* (grey square), *Galaxias gunaikurnai* (black squares), *Galaxias lanceolatus* (grey circle), *Galaxias longifundus* (black diamond), *Galaxias mcdowalli* (inverted black triangle), *Galaxias mungadhan* (open squares), *Galaxias supremus* (open triangle), *Galaxias tantangara* (grey triangle), and *Galaxias terenanus* (black circles) (river basins also shown). .. 188

Figure 5-4 Arte River, at type locality, facing downstream, 25 February 2002. ... 189

Figure 5-5 *Galaxias arcanus*, holotype, NMV A.30568-3, 86.3 mm LCF, Wheelers Creek, Wheelers Creek Logging Road, south of Stacey’s Bridge, Victoria: A) line drawing; B) image of preserved specimen ... 198

Figure 5-6 Detail of A) ventral surface of head and B) jaws of *Galaxias arcanus* .. 198

Figure 5-7 Anterior view of the unique snout of *Galaxias arcanus*, A) jaws closed and B) jaws open, showing fleshy upper lip. ... 199

Figure 5-8 *Galaxias arcanus*, adult, Wheeler Creek, from type locality, ~ 85 mm LCF March 2008. .. 199

Figure 5-9 *Galaxias arcanus*, juvenile colour pattern and propping (left), and adult propping on a rock (right). .. 199

Figure 5-10 Distribution of *Galaxias arcanus* (black circles) and *Galaxias fuscus* (open circles). .. 203

Figure 5-11 Wheeler Creek, at type locality, 1 April 2008. Zulu Creek inflow on right............. 204

Figure 5-12 Typical habitat of *Galaxias arcanus*, amongst cobbles in a fast-flowing riffle, Steavenson River downstream from Marysville, 22 May 2001. ... 204

Figure 5-13 *Galaxias brevicaudus*, holotype, NMV A.30559-3, 77.2 mm LCF, Jibolaro Creek, Tuross Rd, NW of Kybeyan, New South Wales: A) line drawing; B) image of preserved specimen ... 210

Figure 5-14 *Galaxias brevicaudus*, collected at the type locality with the holotype, 14 March 2002; ~ 80 mm LCF. .. 210

Figure 5-15 Jibolaro Creek, at type locality, 14 March 2002... 212

Figure 5-16 *Galaxias fuscus* holotype (NMV A.96), right side... 220

Figure 5-17 *Galaxias fuscus* Rubicon River (NMV A.30266-1), female, usual bar pattern........ 220

Figure 5-18 *Galaxias fuscus* Keppel Hut Creek (NMV A.30257-1), female, alternate bar pattern showing some partial bars. ... 221

Figure 5-19 *Galaxias fuscus*, Falls Creek, Mount Stirling, 21 February 2007; ~ 85 mm LCF... 222

Figure 5-20 Variation in bar pattern in *Galaxias fuscus* from across their range. 223

Figure 5-21 Habitat of *Galaxias fuscus*, Keppel Hut Creek, Lake Mountain, June 1992........ 227
Figure 5-22 Habitat of *Galaxias fuscus* in drier, more open forested catchment, Morning Star Creek, Woods Point. ... 227

Figure 5-23 *Galaxias guaikurnai*, holotype, NMV A.30573-2, 94.6 mm LCF, Shaw Creek, off Howitt Road, Bennison High Plains, Alpine National Park, Victoria: A) line drawing; B) image of preserved specimen ... 234

Figure 5-24 *Galaxias guaikurnai*, collected at the type locality with the holotype, 28 February 2002; ~ 80 mm LCF. .. 234

Figure 5-25 Shaw Creek, at type locality, 16 April 2008. ... 237

Figure 5-26 *Galaxias lanceolatus*, holotype, NMV A.30552-3, 74.5 mm LCF, female, Stoney Creek, Stoney No. 5 Track, W of Seaton, Victoria: A) line drawing; B) image of preserved specimen ... 243

Figure 5-27 *Galaxias lanceolatus*, collected at the type locality with the holotype, 27 February 2002; ~ 75 mm LCF. .. 243

Figure 5-28 *Galaxias longifundus*, holotype, NMV A.30575-2, 81.0 mm LCF, Rintoul Creek, C12 Track, north of Tyers, Victoria: A) line drawing; B) image of preserved specimen .. 250

Figure 5-29 *Galaxias longifundus*, collected at the type locality with the holotype, 28 February 2002. .. 250

Figure 5-30 *Galaxias mcdowalli*, holotype, NMV A.30572-2, 74.2 mm LCF, Rodger River, Waratah Flat Road, Waratah Flat, Snowy River National Park, Victoria: A) line drawing; B) image of preserved specimen. ... 258

Figure 5-31 *Galaxias mcdowalli* collected at the type locality with the holotype, 27 February 2002; ~ 80 mm LCF. .. 258

Figure 5-32 *Galaxias mcdowalli* showing different pattern, collected at the type locality with the holotype, 27 February 2002; ~ 85 mm LCF. ... 258

Figure 5-33 Rodger River, at type locality, 27 February 2002 ... 261

Figure 5-34 *Galaxias mungadhan*, holotype, NMV A.30550-3, 104.5 mm LCF, Lightbound Creek, Dargo High Plains Road, Lankey's Plain, Alpine National Park, Victoria: A) line drawing; B) image of preserved specimen. ... 267

Figure 5-35 *Galaxias mungadhan*, collected from the type locality, 5 April 2011; ~ 90 mm LCF. .. 267

Figure 5-36 Lightbound Creek, at type locality, 16 November 2010. ... 270

Figure 5-37 *Galaxias olidus* holotype (BMNH 1866.2.13.24), showing encysted metacercariae (as small spots) embedded in the skin of the trunk and head, and in the fins 286

Figure 5-38 Examples of colour pattern variation in *Galaxias olidus* 288

Figure 5-39 Distribution of *Galaxias olidus* in south-eastern Australia (river basins shown). ... 296

Figure 5-40 Diversity of aquatic habitats occupied by *Galaxias olidus* 297

Figure 5-41 *Galaxias oliros*, holotype, NMV A.30580-2, 106.9 mm LCF, female, Avoca River, Mount Lonarch Road, SSE of Mount Lonarch, Victoria: A) line drawing; B) image of preserved specimen. ... 307

Figure 5-42 *Galaxias oliros*, Corryong Creek, north-east Victoria, 1 April 2008, ~ 90 mm LCF. .. 307

Figure 5-43 *Galaxias oliros*, Avoca River, Amphitheatre, Victoria, 18 November 2005, ~ 95 mm LCF. .. 309

Figure 5-44 *Galaxias oliros*, Hewitt Creek, Glenelg River system, Victoria, 7 April 2005, ~ 90 mm LCF.. 309

Figure 5-45 Avoca River, at type locality, 14 April 1999 ... 309

Figure 5-46 Distribution of *Galaxias oliros* in south-eastern Australia (river basins shown). ... 313

Figure 5-47 Diversity of aquatic habitats occupied by *Galaxias oliros* 314
Figure 5-48 *Galaxias ornatus* holotype (MNHN A.5225), a 90 mm TL female (Muséum National D'Histoire Naturelle, Paris).......................... 324

Figure 5-49 *Galaxias ornatus*, Badger Creek; usual colour pattern.......................... 324

Figure 5-50 *Galaxias ornatus*, Lynches Creek at Brickhouse Road, 18 February, 2002; more stippled colour pattern. ... 324

Figure 5-51 *Galaxias ornatus*, Cardinia Creek (NMV A.30688-1): A) line drawing; B) image of preserved specimen... 325

Figure 5-52 *Galaxias ornatus*, Clearwater Creek, Otway National Park (NMV A.30595-1), female: A) line drawing; B) image of preserved specimen. .. 325

Figure 5-53 Distribution of *Galaxias ornatus* in central coastal Victoria (river basins also shown). ... 329

Figure 5-54 Diversity of aquatic habitats occupied by *Galaxias ornatus* ... 330

Figure 5-55 *Galaxias supremus*, holotype, NMV A.30571-3, 86.6 mm LCF, female, Carruthers Creek, Main Range Track, SE of Blue Lake, Mount Kosciusko National Park, New South Wales: A) line drawing; B) image of preserved specimen... 336

Figure 5-56 *Galaxias supremus*, collected at the type locality with the holotype, 15 March 2002; ~ 80 mm LCF.......................... 336

Figure 5-57 *Galaxias supremus*, collected from Blue Lake, 15 March 2002; ~ 70 mm LCF.... 336

Figure 5-58 Carruthers Creek, at type locality, 15 March 2002 ... 340

Figure 5-59 Habitat of *Galaxias supremus*, Blue Lake and inflowing tributary, Mount Kosciusko National Park, 15 March 2002... 340

Figure 5-60 *Galaxias tantangara*, holotype, NMV A.30578-2, 86.3 mm LCF, female, Tantangara Creek, tributary, above falls 200 m upstream Alpine Creek Fire Trail, Kosciusko National Park, New South Wales: A) line drawing; B) image of preserved specimen ... 346

Figure 5-61 *Galaxias tantangara*, holotype (NMV A.30578-2), detail of head pattern (right hand side). ... 346

Figure 5-62 Tantangara Creek, tributary, facing upstream to type locality which is above waterfall, 16 March 2002 ... 349

Figure 5-63 *Galaxias terenasus* , holotype, NMV A.30592-3, 65.4 mm LCF, female, Maclaughlin River, Allen Caldwell bridge on Ando Road, NNW of Bombala, New South Wales: A) line drawing; B) image of preserved specimen ... 356

Figure 5-64 *Galaxias terenasus*, holotype, NMV A.30592-3, showing elongate tubular, anterior nostril... 356

Figure 5-65 *Galaxias terenasus* (paratype: NMV A.30542-2, 62.0 mm LCF, White Rock River.): A) line drawing; B) image of preserved specimen ... 356

Figure 5-66 Habitat of *Galaxias terenasus*, Genoa River, Monaro Highway, Rockton, 26 February 2002 ... 357

Figure 5-67 *Galaxias terenasus*, Church Creek, east of Delegate, 17 March 2003; ~ 50 mm LCF. ... 358

Figure 5-68 *Galaxias terenasus*, Genoa River at Rockton, 16 December 2003; ~50 mm LCF. 358

Figure 5-69 Habitat of *Galaxias terenasus*, Church Creek, east of Bombala (Snowy River catchment), 17 December 2003. ... 362

Figure 5-70 Habitat of *Galaxias terenasus*, White Rock River, Southern Access Road (Genoa River system), 16 February 2003 ... 362

Figure 8-1 *Galaxias schomburgkii* (Syntypes ZMB 6788) (Museum für Naturkunde, Berlin). 408

Figure 8-2 *Galaxias ornatus* paratype (MNHN A.6915) (Muséum National D'Histoire Naturelle, Paris) ... 409

Figure 8-3 *Galaxias bongbong* lectotype (AMS L16258-002) ... 410
Figure 8-4 *Galaxias kai* syntype (AMS.I.7) (Australian Museum, Sydney). Note encysted metacercariae on pectoral and caudal fins. ... 413

Figure 8-5 *Galaxias kai* syntype (BMNH 1905.7.29.31) (British Museum of Natural History, London). .. 413

Figure 8-6 *Galaxias kai* syntype (MCZ.27560) (Museum of Comparative Zoology, Massachusetts). ... 413

Figure 8-7 *Galaxias oconnori* holotype (QM I.421). ... 415

Figure 8-8 Detailed view of remains of *Galaxias oconnori* holotype (QM I.421). 415

Figure 8-9 *Galaxias* sp. BMNH 1897.10.27.33-4, possibly from the series examined by Ogilby (1896) (British Museum, London). ... 492

Figure 8-10 *Galaxias* sp. USNM 048823, possibly from the series examined by Ogilby (1896) (S.J. Raredon, Smithsonian Institute). ... 492

Figure 8-11 *Galaxias* sp. QM I.9019, possibly from the series examined by Ogilby (1896), in same jar as QM I.246 from Mount Kosciusko collected by J. Ogilby 492

Figure 8-12 *Galaxias olidus* (NMW-78274) (Naturhistorisches Museum, Vienna) 504
List of Abbreviations/Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>Australian Capital Territory</td>
</tr>
<tr>
<td>AMS</td>
<td>Australian Museum, Sydney</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Analysis of co-variance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AWRC</td>
<td>Australian Water Resources Council</td>
</tr>
<tr>
<td>β</td>
<td>Regression coefficient</td>
</tr>
<tr>
<td>BMNH</td>
<td>British Museum of Natural History, London</td>
</tr>
<tr>
<td>cytB</td>
<td>Cytochrome B</td>
</tr>
<tr>
<td>DD</td>
<td>Drainage Division</td>
</tr>
<tr>
<td>DFA</td>
<td>Discriminant Functions Analysis</td>
</tr>
<tr>
<td>DTT</td>
<td>Diagnosable Terminal Taxon or Taxa</td>
</tr>
<tr>
<td>EBU</td>
<td>Evolutionary Biology Unit</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity units</td>
</tr>
<tr>
<td>FD</td>
<td>Fixed Difference</td>
</tr>
<tr>
<td>GDR</td>
<td>Great Dividing Range</td>
</tr>
<tr>
<td>LCF</td>
<td>Length to caudal fork</td>
</tr>
<tr>
<td>LHS</td>
<td>Left Hand Side</td>
</tr>
<tr>
<td>MANOVA</td>
<td>Multivariate analysis of variance</td>
</tr>
<tr>
<td>masl</td>
<td>Metres above sea level</td>
</tr>
<tr>
<td>MDB</td>
<td>Murray-Darling Basin Drainage Division</td>
</tr>
<tr>
<td>mtDNA</td>
<td>Mitochondrial DNA</td>
</tr>
<tr>
<td>MRT</td>
<td>Multivariate Regression Tree</td>
</tr>
<tr>
<td>NEC</td>
<td>North East Coast Drainage Division</td>
</tr>
<tr>
<td>Nei D</td>
<td>Nei's Distance</td>
</tr>
<tr>
<td>NJ</td>
<td>Neighbour Joining</td>
</tr>
<tr>
<td>NMNZ</td>
<td>National Museum of New Zealand, Wellington</td>
</tr>
<tr>
<td>NMV</td>
<td>Museum Victoria, Melbourne</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>OTU</td>
<td>Operational Taxonomic Unit</td>
</tr>
<tr>
<td>partim</td>
<td>Latin, in part, partly</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Components Analysis</td>
</tr>
<tr>
<td>PCoA</td>
<td>Principal Co-ordinates Analysis</td>
</tr>
<tr>
<td>QLD</td>
<td>Queensland</td>
</tr>
<tr>
<td>QM</td>
<td>Queensland Museum, Brisbane</td>
</tr>
<tr>
<td>RB</td>
<td>River Basin</td>
</tr>
<tr>
<td>RHS</td>
<td>Right Hand Side</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
<tr>
<td>SAG</td>
<td>South Australian Gulf Drainage Division</td>
</tr>
<tr>
<td>SAMM</td>
<td>South Australian Museum, Adelaide</td>
</tr>
<tr>
<td>SEAusT</td>
<td>South-east Australia</td>
</tr>
<tr>
<td>SEC</td>
<td>South East Coast Drainage Division</td>
</tr>
<tr>
<td>SL</td>
<td>Standard Length</td>
</tr>
<tr>
<td>s.l.</td>
<td>Latin, sensu lato, in the broad sense</td>
</tr>
<tr>
<td>sp. nov.</td>
<td>Latin, species novum, new species</td>
</tr>
<tr>
<td>s.s.</td>
<td>Latin, sensu strictu, in the strict sense</td>
</tr>
<tr>
<td>TAS</td>
<td>Tasmania</td>
</tr>
<tr>
<td>TL</td>
<td>Total Length</td>
</tr>
<tr>
<td>UPGMA</td>
<td>Unweighted Pair-Group Method of arithmetic Averages</td>
</tr>
<tr>
<td>VIC</td>
<td>Victoria</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

Obviously the greatest debt and acknowledgement goes to my family for allowing me, at a ripe and mature age, to launch into further study and to add considerable extra burden to my (and their) lives. Thanks Robyn, Jaan and Ain for letting me disappear for weeks on end into unknown forests for three years, putting up with a grump, man-handling me in the right direction for the next six years when I was floundering, for feigning delight about ‘galaxiids’ and for enduring this ‘thing’ for so long.

This work is dedicated to the memory of the late Dr Robert (Bob) McDowall (1939–2011) who died recently in Christchurch, New Zealand. Bob is remembered for his years of dedication and detailed work on the Galaxiidae across the Southern Hemisphere, which inspired me to focus on these ubiquitous but neglected fishes in temperate Australia. Over many years Bob gave freely of his time and provide mentoring in the form of encouragement and assistance, including frank and critical comment where/when needed, and importantly, he reviewed this project (favorably!) for the Cooperative Research Centre for Freshwater Ecology (CRCFE) in its early days which helped to secure much needed additional funds. Bob’s fear in my work was that he had ‘missed anything too obvious’ when he, along with Roger Frankenberg, revised the Australia Galaxiidae in the late 1970s. Based on the available material and techniques of the time, the work was sound – I have just had the chance for a longer and more detailed look.

I also thank my primary supervisor Professor Arthur Georges (University of Canberra), and especially members of my supervisory panel Mark Adams (Evolutionary Biology Unit, South Australian Museum) and Dr Martin Gomon (Ichthyology, Museum of Victoria). Arthur accepted me as a candidate out of thin air and also persisted with me even though he thought he would be dead before I finally finished! Mark also accepted me out of the blue after I ‘landed on his doorstep’, is one of the most positive people I know and always permeated me with new energy and enthusiasm. He is especially thanked for his continuing guidance, openness and willingness to help. And Martin finally got an answer to his question of “Why don’t you do a PhD?” and was happily roped in, and freely gave taxonomic advice and guidance and allowed me to show up and hog valuable lab space at irregular intervals. In that regard, I thank Museum Victoria for appointing me as an honorary Research Associate and allowing me access to much needed X-ray facilities and for other associated research support.

Dr Peter Unmack (currently Brigham Young University, Utah, USA) and Dr Michael Hammer (South Australia) are also sincerely acknowledged for their friendship and continual advice and knowledge exchange with things fishy. I took so long to finish this so that I could see what you two did in yours! I also thank the (CRCFE), of which I was a member until it evolved into the e-
Water CRC, for their generous funding for this project (C.220). In particular I thank Prof. Gary Jones, Prof. Barry Hart and Prof. Sam Lake for their support and assistance in helping to secure the project and funds. My employer, the Victorian Department of Sustainability and Environment, is thanked for allowing me to undertake most of this project whilst still employed with them. In this regard Tim O’Brien and Dr John Koehn (Arthur Rylah Institute for Environmental Research) are especially thanked for their support and particularly their patience.

Valuable multivariate statistical advice, and essential guidance on the secrets of using ‘R’, were provided by Dr Ken Sharpe, Statistical Consulting Centre, University of Melbourne, and Rhyll Plant is especially thanked for her expert and detailed preparation of the scientific illustrations (they also look fabulous on tea-towels and t-shirts). Di Bray (Collections Manager, Museum Victoria) is thanked for helping with a multitude of small and large curatorial issues, allowing me to commandeer a whole row of shelves in the collection area for my ‘junk’ and for organizing the registration of the bulk of my galaxiid collection. That said, a sincere thanks to Sue Martin and Peter Green for spending weeks of their volunteer time registering it all! Dr Richard Marchant (Museum Victoria) is thanked for identifying the aquatic macroinvertebrates from the stomach of the holotype of *Galaxias olidus* and for additional discussion on PCA analysis. Neil Armstrong and Rudie Kuiter are thanked for photographing galaxiids from far-flung creeks which arrived in strange boxes at irregular intervals via post. Rudie also encouraged me to take up fish photography and provided valuable tips and advice along the way.

Sincere thanks are also extended to the following cast of thousands who helped over the years, either with access to unpublished data, field assistance, advice, queries, etc. (location/institution listed at time of assistance): Aland, Glynn – Arthur Rylah Institute for Environmental Research (ARI), Melbourne; Allibone, Richard – Department of Conservation, Wellington, New Zealand; Beard, Peter – NSW National Parks, Gloucester; Braund, Stacey – Resource Strategies Pty Ltd; Brock, Margaret – CRC for Freshwater Ecology; Broderick, Tony – NSW Department of Primary Industries and Natural Resources, Grafton, NSW; Bruce, Andrew – NSW Fisheries; Bryant, Ian – Queensland Parks and Wildlife Service; Cant, Belinda – ARI, Melbourne; Cashner, Robert – University of New Orleans, Louisiana, USA; Chessman, Bruce – NSW EPA, Sydney, NSW; Clausen, Eric – NSW National Parks; Close, Paul – ARI, Melbourne; Erskine, Wayne – State Forests of NSW; Fairbrother, Peter – ARI, Melbourne; Faris, James – NSW National Parks; Farragher, Bob – NSW Fisheries, Cronulla; Franken berg, Roger – Howlong, NSW; Gehrke, Peter – NSW Fisheries, Port Stephens; Gill, Anthony – Arizona State University, USA; Gillespie, Graeme – (formerly) ARI, Melbourne; Gilligan, Dean – NSW Fisheries; Grylls, John – Sutton Grange, Victoria; Growns, Ivor - University of New England, Armidale; Hammer, Michael – Aquasave, Adelaide; Harris, John - NSW Fisheries; Hart, Barry – CRC for Freshwater Ecology; Hartley, Simon – NSW Fisheries, Port Stephens; Heinze, Harry –
To anyone else I missed, I sincerely apologize, and claim brain-fade over so many years!

For access to museum, institute or personal fish collection information, images or loan of valuable material and registration of material, I would also like to thank the following people: Adams, Mark – Evolutionary Biology Unit, South Australian Museum, Adelaide; Bartsch, Peter – Museum fur Naturkunde der Humboldt Universität zu Berlin, Berlin, Germany; Bender, Patrick – Tasmanian Museum and Art Gallery, Hobart; Bray, Dianne - Museum Victoria, Melbourne, Australia; Brown, Barbara – American Museum of Natural History, New York, USA; Buse, Klaus – Zoologische Forschungsinstitut und Museum Alexander Koeing, Bonn, Germany; Causse, Romain - Muséum National D'Histoire Naturelle, Paris; Foster, Ralph – South Australian Museum, Adelaide, Australia; Fricke, Ronald – Staatliches Museum für Naturkunde in Stuttgart, Stuttgart, Germany; Friel, John – Cornell University Museum of Vertebrates, Ithaca, USA; Gabsi, Zora - Muséum National D'Histoire Naturelle, Paris; Glaw, Frank – Zoologische Staatssammlung, Munich, Germany; Gomon, Martin – Museum Victoria, Melbourne, Australia;