Exposure-dose-response of *Saccostrea glomerata* (Sydney rock oyster) to cadmium obtained from suspended sediments and phytoplankton

Helena Angeline Schmitz

Masters of Applied Science in Research
Environmental Toxicology

Institute for Applied Ecology
Faculty of Applied Science
University of Canberra
Bruce, ACT
Dedicated to my Great Grandparents
Anecía and Michael Hodikoff.

And to my Attuan Ancestors whose lives wholly depended on the ocean.

(Photos: University of Alaska Anchorage/Fairbanks)
Thanks for supporting my dreams Brad!

- Helena 💖
Copyright in relation to this thesis:

Under Section 35 of the Copyright Act of 1968, the author of this thesis is the owner of any copyright subsisting in the work, even though it is unpublished. Under section 31(1)(a)(i), copyright includes the exclusive right to 'reproduce the work in a material form'. Thus, copyright is infringed by a person who, not being the owner of the copyright, reproduces or authorises the reproduction of the work, or of more than a reasonable part of the work, in a material form, unless the reproduction is a 'fair dealing' with the work 'for the purpose of research or study' as further defined in Sections 40 and 41 of the Act.

This thesis must therefore be copied or used only under the normal conditions of scholarly fair dealing for the purposes of research, criticism or review, as outlined in the provisions of the Copyright Act 1968. In particular, no results or conclusions should be extracted from it, nor should it be copied or closely paraphrased in whole or in part without the written consent of the author. Proper written acknowledgement should be made for any assistance obtained from this thesis.

Thesis Author Signature and Date: Helena Schmitz, May 14, 2013
Acknowledgements

I have to thank my husband Brad Schmitz first because if it wasn’t for his support I wouldn’t have come to Australia to pursue furthering my education. He always pushed me to get things done at school. I need to thank my son, Brad Jr., who fed my oysters a few times. The support given by both Brad and Brad Jr. has shown me how much love you have given me through it all.

Both of my supervisors, Bill Maher and Anne Taylor, helped me in various ways to achieve goals for the research projects. I especially appreciated that my supervisors, Bill and Anne, gave me direction, help, and support when it was needed.

I have tried to think of a unique way to say thank you to Bill since he has supervised many students I wanted my thank you to stand out. The only way I thought would be unique is to say thank you in Aleut, as I know other students probably didn’t say thank you in Aleut, so qa’agaasakung. Qa’agaasakung for everything – for always being encouraging, being patient, and having a sense of humor that calmed me down throughout the two years.

I’d especially like to thank Anne Taylor for having supported my work and for her understanding with having a child. Thank you for being willing to do laboratory work without my help due to my child’s schedule. That type of support and understanding is irreplaceable. Anne showed me how to perform many tasks in the laboratory, which I know these lessons will go far into the future.

A particular thanks to Frank Krikowa who was so patient with me and was willing to accept all of my mistakes that I made during the two years working in the laboratory. As he has taught me, mistakes are a way to learn. Thank you for making my research results come to life – without those data there would be no thesis.

There are others that really do deserve gratitude and they are the postgraduate students in my program. I would like to thank Elliott Duncan for having taught me how to grow and care for algae. More importantly, Elliott, thank you for the willingness to answer all of my questions about everything whenever and wherever. I learned a great deal from Elliott. Also, a thank you to Rod Ubrihien who was willing to help and answer questions as well. I would like to thank Rod for having gone out to attempt to collect sediment in Bateman’s Bay with me and eventually then collecting sediment from Bega River for the project. Both Elliot and Rod had always provided constant support, which prevented me from being confused all of the time. I would like to thank both Larissa Schneider and Rajani Japtap for having showed me how to perform soil and tissue digestions, which were very important skills needed for my research.

I would like to thank Garry Collins of the University of Canberra who was the first to review my first attempts of my literature review and who gave great feedback. I would like to thank Wendy Campbell at Waterplus in Fyshwick for providing the water containers for my research project.
Abstract

Estuaries can receive anthropogenic contamination from both land and ocean sources making estuaries susceptible to contaminants such as cadmium. A common inhabitant of Eastern Australia estuaries is the oyster, *Saccostrea glomerata* which is able to uptake cadmium through three pathways: 1) suspended sediments, 2) water column, and/or 3) diet.

In this study, *Saccostrea glomerata* were exposed to cadmium through cadmium-spiked suspended sediments (19 & 93 mg/kg) and cadmium-enriched phytoplankton (2-3 μg/g) under controlled laboratory conditions. Cadmium uptake and effect measurements, total antioxidant capacity, lipid peroxidation, and lysosomal stability were measured.

The oyster tissue from the suspended sediments (SS) experiment accumulated cadmium from both treatments (Low-Cd SS; 2-10 mg/kg & High-Cd SS, 15-49 mg/kg). Some cadmium desorbed from the sediment within 6 days of the suspended sediments experiment. The oysters could have obtained cadmium both from the suspended sediments and the water column. Oysters accumulated less cadmium in the phytoplankton experiment with final tissue concentrations between 0.7 μg/g and 4.1 μg/g.

In both experiments, cadmium-exposed oysters showed a significant reduction of total antioxidant capacity compared to the controls’ total antioxidant capacity. In the suspended sediments experiment, the Low-Cd SS treatment had a higher mean total antioxidant capacity of 18.0 ± 5 mM/mg protein compared to the High-Cd SS treatment of 14.0 ± 5 mM/mg protein. Oyster fed cadmium-enriched phytoplankton had a reduction in total antioxidant capacity with 18.0 ± 4 mM/mg protein. Comparison between both experiments with the cadmium-exposed
oysters the total antioxidant capacity reduction was not significantly different between experiments.

Thiobarbituric acid reactive substances, an oxidative damage assay, showed similar patterns. In the suspended sediments experiment the Low-Cd SS treatment had lower thiobarbituric acid reactive substances (93.0 ± 22 MDA nmol/mg protein) compared to the High-Cd SS treatment (139.0 ± 41 MDA nmol/mg protein). The thiobarbituric acid reactive substances for the phytoplankton experiment were 127.0 ± 11 MDA nmol/mg protein. In both experiments thiobarbituric acid reactive substances concentrations were similar.

In both experiments, cadmium-exposed oysters had lysosomal destabilization percentages that were significantly higher than the controls’ percentages (Control averages: 34 ± 8% & 35 ± 9%). Lysosomal destabilization for the Low-Cd SS treatment was 38 ± 12% and 42 ± 9% for the High-Cd SS treatment. Lysosomal destabilization for the oysters fed cadmium-enriched phytoplankton was 46 ± 2 %. Comparison between both experiments showed that the lysosomal destabilization percentages were not significantly different between experiments.

Saccostrea glomerata experienced oxidative stress and lysosomal destabilization from a low dose of cadmium derived from phytoplankton and experienced oxidative stress from cadmium ingestion via suspended sediments and the water column high cadmium concentrations. These results from both experiments support the hypothesis that *Saccostrea glomerata* can take cadmium up through suspended sediments and the water column and can cause oxidative stress and lysosomal destabilization. Results also showed that low concentrations of cadmium through phytoplankton (diet) can cause cadmium stress.
Table of Contents

Certificate of Copyright...I
Acknowledgements..II
Abstract...III
List of Tables..X
List of Figures..XI
List of Appendices...XIII
Objectives & Hypotheses...XV
Chapter 1 Background and Rationale..1
Chapter 2 Literature Review...4
 2.1 Anthropogenic Marine and Estuary Contamination..................4
 2.1.1 Australian Estuaries..7
 2.1.2 Contaminations in Australian Estuaries.............................8
 2.1.3 Metals as Contaminants: Essential versus Non-Essential Metals...11
 2.2 Cadmium in the Environment..17
 2.2.1 Cadmium in the Marine Environment.................................17
 2.2.2 Factors Affecting Uptake of Dissolved Cadmium....................17
 2.2.2.1 Estuary pH...18
 2.2.2.2 Estuary Salinity...19
 2.2.2.3 Estuary Temperature..20
 2.2.2.4 Hardness...22
 2.2.2.5 Dissolved Organic Carbon..23
 2.2.3 Factors Affecting Uptake and Binding of Cadmium by Sediments and Organisms...24
 2.2.4 Ion Exchange Capacity...28
 2.2.5 Cadmium and pH..29
 2.2.6 Cadmium and Oxidation-Reduction Reactions......................30
 2.2.7 Overview of Cadmium: Comparative Analysis Between Soil, Sediment and Seawater...31
2.3 Phytoplankton Uptake Pathway

2.3.1 Phytoplankton Accumulation of Cadmium

2.3.2 Oyster Metal Assimilation Efficiency

2.3.2.1 Phytoplankton species

2.3.2.2 Gut Chemistry of Oysters Modifying Metal Bioavailability

2.3.3 Cadmium Dietary Exposure Examples

2.4 Sediment, Suspended Sediments, and Phytoplankton Correlations with Cadmium Bioavailability

2.5 Saccostrea glomerata as Biomonitor

2.5.1 Saccostrea glomerata Tissue Cadmium Concentrations

2.5.2 Oyster Physiology

2.5.2.1 Intracellular Digestion

2.5.2.2 Lysosomal Destabilization

2.5.2.3 Digestive Gland

2.5.3 Estuarine Aquatic Organism’s Dose-Response to Cadmium

2.5.3.1 Oyster Species Dose-Response to Cadmium

2.5.4 Oxygen-Reduction Metabolism and Lipid Peroxidation

2.5.4.1 Lipid Peroxidation Induced by Cadmium

2.6 Evolution and Molecular Mechanisms of Metal Metabolism

2.6.1 Costs of Tolerance and Cost of Genetic Variability

2.7 Literature Review Conclusion

Chapter 3 Methods

3.1 Collection and Maintenance of Oysters

3.1.1 Organism Collection

3.1.2 Phytoplankton

3.1.3 Maintaining the Oysters

3.2 Sediment Collection for Suspended Sediments Experiment

3.2.1 Sediment Collection

3.2.2 Grain Size Analysis
3.3 Experimental Design

3.3.1 Preparation of Cadmium-Spiked Sediments

3.3.2 Saccostrea glomerata Exposure to Suspended Sediments

3.4 Phytoplankton Exposure Experiments

3.4.1 Pilot Study with Chaetoceros muelleri

3.4.2 Continuous Culture of Chaetoceros muelleri

3.4.3 Saccostrea glomerata Exposure to Phytoplankton

3.5 Metal Analysis

3.5.1 Sediment Metal Analysis

3.5.2 Chaetoceros muelleri Metal Analysis

3.5.3 Oyster Metal Analysis

3.6 Effect Measurements

3.6.1 Assay Preparation

3.6.2 Total Antioxidant Capacity Assay (TAOC)

3.6.3 Thiobarbituric Acid Reactive Substances Assay (TBARS)

3.6.4 Protein Analysis

3.6.5 Lysosomal Destabilization

3.7 Statistical Analysis

Chapter 4 Results

4.1 Quality Assurance Results

4.1.1 Sediment Quality Assurance

4.1.2 Phytoplankton Quality Assurance

4.1.3 Oyster Tissue Quality Assurance

4.2 Cadmium-Spiked Suspended Sediments Experiment

4.2.1 Total Tissue Cadmium Concentrations

4.2.1.1 Cadmium Distribution

4.2.2 Water Column Cadmium Concentrations

4.2.2.1 Comparison between Cadmium Water Column and Oyster Tissue Concentrations
5.2.1 Roles of Antioxidant Enzymes and Non-enzymes with Oxidative Stress.............142

5.3 Thiobarbituric Acid Reactive Substances Biomarker ..145
5.3.1 Oxidative Stress ..148

5.4 Lysosomal Destabilization ..149
5.4.1 Oxidative Stress and Lysosomal Destabilization ...150
5.4.2 Lysosomal Destabilization Increase Due to Laboratory Settings151

5.5 Cadmium Affects on Saccostrea glomerata ..152
5.5.1 Cadmium Tissue Concentration in Relation to Cadmium-Induced Stress ..152
5.5.1.1 Cadmium Pathways: Dietborne versus Waterborne..153
5.5.2 Relevance of Laboratory Research in Relation to Field Situations158
5.5.3 Relevance to Environmental Guidelines ...163
5.5.3.1 Cd Water Column Concentrations ...163
5.5.3.2 Surface Sediments & Suspended Sediments Cd Concentrations166
5.5.3.3 Cd Dietborne Pathway ..166

Chapter 6 Synopsis ..168

6.1 Research Hypotheses Overview ..168
6.1.1 Suspended Sediments and Phytoplankton Experiments with Tissue Concentration ..168
6.1.2 Overall Stress Experienced by Saccostrea glomerata due to Cd-Exposure169
6.1.3 Cadmium-Dose-Response Relationship ...170

Chapter 7 Future Research ..173
List of Tables

Table 2.1: Marine Sources of Contamination and Untreated Sewage.................................4
Table 2.2: Sedimentary metal concentrations (µg/g) and metal enrichment in Georges River/Botany Bay & Port Jackson, New South Wales..9
Table 2.3: Complexed Forms of Cadmium Both in Sediment-Interfacial Seawater (a &b) & Soil (c)...33
Table 2.4 Research with Saccostrea glomerata Cadmium Tissue Concentrations................46
Table 2.5 Research with High Saccostrea glomerata Cadmium Tissue Concentrations........47
Table 4.1: Sediment Quality Assurance..97
Table 4.2: Phytoplankton Quality Assurance..97
Table 4.3: Oyster Tissue Quality Assurance..97
Table 4.4: Saccostrea glomerata Cadmium Accumulation from the Suspended Sediments Experiment...99
Table 4.5: Saccostrea glomerata Cadmium Accumulation from the Phytoplankton Experiment..118
Table 5.1: TBARS: MDA product levels in nmol/g protein or wet weight amongst bivalve species..146
Table 5.2: Water Concentration Guidelines Compared to Low & High-Cd SS Treatments....163
Table 5.3: Low & High-Cd SS Treatment Biomarker Responses, Tissue Concentrations, and Dissolved Cd Enrichment Factor..165
List of Figures

Figure 2.1: River Contamination Sources and Industrial and Sewage Waste Plumes6
Figure 2.2: Human Modified Australian Estuaries ...7
Figure 2.3: Essential vs. Non-Essential Metals ..12
Figure 2.4: Exposure-Fate Model ...15
Figure 2.5: Cadmium Speciation Due to Salinity ...20
Figure 2.6: *Crassostrea virginica* Respiration Graph (Heart Rate, beats per minute) Due to Temperature ...21
Figure 2.7: Cd Uptake Rate Constant in Relation to Dissolved Carbon23
Figure 2.8: Estuary Sedimentation & Sources of Suspended Sediments25
Figure 2.9: Sediment Contaminant Hydrogeochemical Cycle Diagram27
Figure 2.10: Example of Diatom & Growth after Cadmium Exposure35
Figure 2.11: Artificial oyster gut environment copper remained after the *Tetraselmis suecica* was exposed at different pH gradients ...38
Figure 2.12: Biology of *Saccostrea glomerata* (Sydney Rock Oyster)50
Figure 2.13: *Crassostrea virginica* Digestive System ...51
Figure 2.14: Intracellular Digestion ...53
Figure 2.15: Oxygen Reduction Metabolism ..61
Figure 2.16: Non-Essential Metal Flow Chart: detoxification or non-detoxification that can result in antioxidant stress, lipid peroxidation, & lysosomal destabilization63
Figure 2.17: *Crassostrea gigas* Gill:Palp Ratio ..67
Figure 2.18: Organisms’ Genetic Response to Chemical Exposure72
Figure 3.1: Photo: Soil collection location at Bega River, New South Wales79
Figure 3.2: Photo: Suspended sediment experiment design with conical shaped containers ...83
Figure 3.3: Photo: Continuous Culture of *Chaetoceros muelleri* dosed with [Cd$^{2+}$] 1.46 µg/L ..86
Figure 3.4: Photo: Phytoplankton experimental design ...89
Figure 4.1: Boxplot of mean total cadmium tissue concentrations in µg/g dry weight for controls, Low & High-Cd SS treatments, and comparison between all SS treatments100-101
Figure 4.2: Suspended sediments experiment *S. glomerata* total mean tissue cadmium concentrations in whole tissue (hepatopancreas, visceral mass, mantle, & muscle) and gills in µg/g dry weight ...102-103
Figure 4.3: Suspended sediments experiment seawater samples cadmium concentrations ...105-106
Figure 4.4: Suspended sediments experiment oyster tissue cadmium in µg/g dry weight compared to dissolved cadmium (ug/l) in water column ...107
Figure 4.5: Suspended sediments experiment TAOC average results in mM/mg protein from all treatment replicates ...108-110
Figure 4.6: Suspended sediments experiment TBARS average results in MDA nmol/mg protein from all SS treatment replicates ...111
Figure 4.7: Suspended sediments experiment lysosomal destabilization results in percentage for all SS treatments ..113
Figure 4.8: *Chaetoceros muelleri* Total Cadmium Accumulation over 28-days in µg/g for Bottle A & Bottle B............................115
Figure 4.9: *Chaetoceros muelleri* Continuous Growth Curve Bottle A & Bottle B.................116

Figure 4.10a: *S. glomerata* total tissue cadmium concentrations (µg/g dry weight) from 28-day phytoplankton cadmium exposure..119

Figure 4.10b: *S. glomerata* whole tissue and gill tissue cadmium concentration (µg/g dry weight) from 28-day phytoplankton cadmium exposure...119

Figure 4.11: Phytoplankton experiment TAOC mean results in mmol/mg protein from all treatment replicates...121

Figure 4.12: Phytoplankton experiment TBARS average results in MDA nmol/mg protein from all treatment replicates..122

Figure 4.13: Phytoplankton experiment lysosomal destabilization results in percentage for pre-experiments, controls, and replicates...124-125

Figure 4.14: *S. glomerata* cadmium tissue concentrations in µg/g dry weight for whole tissue and gills in all treatments from suspended sediments and phytoplankton experiments........127

Figure 4.15: TAOC results in mM/mg protein for control and all cadmium treatments from suspended sediments and phytoplankton experiments...128

Figure 4.16: TAOC and Tissue Cadmium Concentrations..129

Figure 4.17: TBARS results in MDA nmol/mg protein for control and all cadmium treatments from suspended sediments and phytoplankton experiments...130

Figure 4.18: TBARS and Tissue Cadmium Concentrations..131

Figure 4.19: TBARS and TAOC Comparison Graph...132

Figure 4.20: Lysosomal destabilization results in percentage from suspended sediments and phytoplankton experiments...133

Figure 4.21: Lysosomal destabilization (%) response compared to average cadmium tissue cadmium concentrations from suspended sediments and phytoplankton experiments........134

Figure 4.22: Lysosomal destabilization and TAOC..135

Figure 4.23: Lysosomal destabilization and TBARS..136
List of Appendices with Appendices’ Table & Figures

Appendix I: Coastal Energy..199
 Figure I: Categorization of coastal areas that includes estuaries...200
Appendix II: Saccostrea glomerata Distribution & Mining Locations..201
 Figure II a: Saccostrea glomerata (Sydney Rock Oyster) Australia Distribution &
Locations of Sources of Contaminants..201
 Figure II b: Uranium Mines and Tailing Deposits in Northern Territory.................................202
Appendix III: Oyster Measurements Before and After Experiments...203-209
 Table III: Suspended Sediments Experiment Replicate #1 for controls, Low-Cd
 & High-Cd SS Treatments (Prior to Experiment)...203
 Table III A: Suspended Sediments Experiment Replicate #2 for controls, Low-Cd
 & High-Cd SS Treatments (Prior to Experiment)...204
 Table III B: Suspended Sediments Experiment Replicate #3 for controls, Low-Cd
 & High-Cd SS Treatments (Prior to Experiment)...205
 Table III C: Suspended Sediments Experiment Oyster Size and Weight,
 Pre-Experiment Measurements...206
 Table III D: Suspended Sediments Experiment Replicate #1 for controls, Low-Cd
 & High-Cd SS Treatments (After to Experiment)..207
 Table III E: Suspended Sediments Experiment Replicate #2 for controls, Low-Cd
 & High-Cd SS Treatments (After to Experiment)..208
 Table III F: Suspended Sediments Experiment Replicate #3 for controls, Low-Cd
 & High-Cd SS Treatments (After to Experiment)..209
Appendix IV: Seawater Measurements (ph, temperature, conductivity, and turbidity)..........210-213
 Table IV: Suspended Sediments Experiment Seawater Measurements.................................210-211
 Table IV A: Phytoplankton Experiment Measurements for Controls.................................212
 Table IV B: Phytoplankton Experiment Measurements for Replicates.................................213
Appendix V: Alga Counts...214
 Table V: Chaetoceros muelleri Algae Counts...214
 Table V A: Tetraselmis chuii Algae Counts...214
Appendix VI: Grain Size Analyses Results..215-216
Appendix VII: Bega River Soil Samples Analyzed for Cadmium Before and After
Suspended Sediments Experiment...217
 Table VII: Pre-Experiment Soil Samples..217
 Table VII A: Cadmium-Spiked Soil Samples..217
 Table VII B: Post-Experiment Soil Samples..217
Appendix VIII: ANOVA Results ...218-241
 Table VIII: Suspended Sediments Treatments and Total Tissue Cadmium
 Concentrations...218
 Table VIII A: Low & High-Cd SS ANOVA between each treatments replicates
 with tissue cadmium concentrations...219
 Table VIII B: Low-Cd SS ANOVA between each treatments replicates with gill
 and whole tissues...220
 Table VIII C: High-Cd SS ANOVA between each treatments replicates with gill
 and whole tissues...221
Table VIII D: Suspended Sediments Treatments and Seawater Cadmium Concentrations..222
Table VIII E: Suspended Sediments Treatments and TAOC Results..................223
Table VIII F: TAOC ANOVA with control treatments between control replicates.....224
Table VIII G: TAOC ANOVA with High-Cd SS Treatments between treatment replicates..225
Table VIII H: Suspended Sediments Treatments and TBARS Results..................226
Table VIII I: Suspended Sediments Treatments and Lysosomal Destabilization........227
Table VIII J: Phytoplankton Experiment Replicates and Total Tissue Cadmium Concentrations..228
Table VIII K: Phytoplankton Experiment Replicates and TAOC Results..............229
Table VIII L: Phytoplankton Experiment Replicates and TBARS Results.............230
Table VIII M: Phytoplankton Experiment Replicates and Lysosomal Destabilization..231
Table VIII N: Phytoplankton Experiment Lysosomal Destabilization between Control replicates..232
Table VIII O: Suspended Sediments and Phytoplankton Experiments and Total Tissue Cadmium Concentrations..233-234
Table VIII P: Suspended Sediments and Phytoplankton Experiments and Cadmium Distribution Concentrations...235
Table VIII Q: Suspended Sediments and Phytoplankton Experiments and TAOC Results..236-237
Table VIII R: Suspended Sediments and Phytoplankton Experiments and TBARS Results..238-239
Table VIII S: Suspended Sediments and Phytoplankton Experiments and Lysosomal Destabilization..240-241
Objectives & Hypotheses

Objectives of this research were to:

1) Understand how *Saccostrea glomerata* accumulates cadmium,

2) Determine how much stress is caused by cadmium to *Saccostrea glomerata* through measuring the total antioxidant capacity, lipid peroxidation, and lysosomal destabilization.

3) Determine the most important pathway by which cadmium is obtained by *Saccostrea glomerata* in relationship to metal toxicity.

Similarly, these questions are to aid in addressing the objectives of the research:

4) At what concentration of cadmium do you first see the signs of response?

5) At what amount of cadmium do you see the least and greatest effects? Is this linear?

6) How much cadmium will the oyster uptake through a diet of algae?

7) How can these research results be related back to the estuary environment?

The hypotheses are:

[H1]: *Saccostrea glomerata* can accumulate cadmium from suspended sediments.

[H2]: Accumulation of cadmium from sediments results in a decreased antioxidant capacity, and an increase in lipid peroxidation and in lysosomal destabilization.

[H3]: *Saccostrea glomerata* can accumulate cadmium from phytoplankton.

[H4]: Accumulation of cadmium from phytoplankton results in a decreased antioxidant capacity and an increase in lipid peroxidation and in lysosomal destabilization.