Effects of land-use on the response of stream macroinvertebrate communities to drought, fire and flood disturbance in the Lower Cotter Catchment.

Anthea R. Florance

Bachelor of Environmental Science

Institute for Applied Ecology

University of Canberra

A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Applied Science (Honours) at the University of Canberra.

December 2013
ABSTRACT

Land-use can have a significant influence on macroinvertebrate communities following natural disturbance events such as drought, fire and flood. The long-term response of macroinvertebrate communities to multiple disturbance types in nature is relatively unknown, because of our focus towards individual disturbance events. Of the studies conducted it is thought that the recovery by macroinvertebrate communities may be either longer or incomplete when catchments have been previously degraded by the effects of land-use disturbance or another disturbance event. In 2003, bushfires burnt through approximately 70% of land within the Australian Capital Territory (ACT), including areas within the Lower Cotter Catchment (LCC). Following the fires, in September 2010 and again in March 2011, flooding severely altered the physical characteristics of streams within the LCC. During the years of 1925-2006 many lower areas of the catchment were subject to commercial forestry practices such as the construction of access roads, and the seeding and logging of *Pinus radiata*. Although commercial forestry practices ceased in 2006 many lower areas of the catchment remain affected by the effects of the pine plantations and *Pinus radiata* are still a common feature within lower areas of the catchment. In addition to these disturbance events, during the years of 1999-2009 the LCC was also subject to severe drought conditions, which made many streams with the LCC susceptible to drying. This catchment having experienced multiple disturbances of drought, fire, flood and land-use provided an opportunity to study the effects of these disturbances on macroinvertebrate communities.

This study examines a long-term data set, collected by the Institute for Applied Ecology (IAE) Freshwater Ecology Laboratory (University of Canberra) between the years of 1994-2013, which takes into account these disturbance events. The objectives of this study were: 1.) to determine how stream macroinvertebrate communities responded to drought, fire and flood disturbance within the LCC and, 2.) to determine whether former forestry land-use affected how stream macroinvertebrate communities responded to drought, fire and flood disturbance within the LCC.

This study found that changes in stream flow caused by drought and flood had an overriding influence on macroinvertebrate community composition within the LCC. However, macroinvertebrate communities may be more resistant to drought than flood
because shifts in macroinvertebrate communities only occurred once stream flow ceased. Response by macroinvertebrate communities to fire in the LCC appeared to be taxa specific and was difficult to detect using multivariate analysis. Taxa which are sensitive to reduced water quality and scouring (e.g. Baetidae, Leptophlebiidae and Gripopterygidae) were absent in 2003, yet returned within two years of fire taking place. This indicates that macroinvertebrate communities are generally resilient to fire and will recover within two years after fire, but are less resistant to fire and that many sensitive taxa will either be absent or decline in abundance in the first year of fire taking place. Land-use disturbance had little, if any, effect on macroinvertebrate community composition within the LCC and land-use did not appear to affect how macroinvertebrate communities responded to drought, fire and flood within the LCC. However, this may have been caused by the spatial distribution of forestry land-use and native vegetation within the catchment, in combination with the long-term disturbance history of forestry land-use operating within the catchment.

This study provides evidence that further work is needed to examine the effects of multiple disturbances on macroinvertebrate communities. While single disturbances provide valuable insight into how macroinvertebrate communities may respond, there is a growing need for further exploration of multiple disturbance events to further our knowledge of how macroinvertebrate communities respond to disturbances.
ACKNOWLEDGEMENTS

Many people have assisted me during the formation of this thesis and I thank the following people for their help throughout the year. I thank my supervisors Fiona Dyer and Evan Harrison for their guidance and support in all areas of this project. I thank ACT Government (ACT Parks Conservation and Lands), with special thanks to Brian Summers and the Institute for Applied Ecology and University of Canberra for funding this research project. I thank former employees of the Freshwater Ecology Laboratory at the University of Canberra for collecting data before and after the fires, and before the floods, as I could not have undertaken this project without this valuable data.

I thank Chris Levings for his invaluable knowledge of the Lower Cotter Catchment and for guiding me around the maze of trails around Lees and Condor Creeks and thanks to Sally Hatton for assisting me in fieldwork and for reminding me to have fun. I also give a special thanks to my fiancé David Sprinkle for supporting me throughout the duration of my thesis and for assisting me in fieldwork. Also a big thankyou to my family for their support throughout the year, I feel I would be lost without you. And lastly I thank everyone in the Freshwater Ecology Laboratory/Institute for Applied Ecology at the University of Canberra for assisting me in my research and making the year an enjoyable experience.
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1 Background ... 2

1.2 Thesis outline .. 4

1.3 Definition and types of disturbance: ... 4

 1.3.1 Definition of disturbance .. 4

 1.3.2 Types of disturbance: ... 7

 1.3.3 Common types of disturbance in Australia ... 10

 1.3.4 Drought and biological responses .. 10

 1.3.5 Flood and biological responses ... 12

 1.3.6 Fire and biological responses ... 14

 1.3.7 Land-use and biological responses ... 16

 1.3.8 Biological response to natural disturbances in modified landscapes 17

1.4 Factors that influence macroinvertebrate community response to disturbance: 18

 1.4.1 Adaptations for survival .. 18

 1.4.2 Macroinvertebrate resistant strategies .. 19

 1.4.3 Macroinvertebrate resilient strategies ... 20

 1.4.4 Effects of land-use on the resilience and resistance of stream
 macroinvertebrate communities .. 21

1.5 Conclusion: A synthesis of what we know ... 22

 1.5.1 Macroinvertebrate community response to drought, fire and flood
 disturbance in modified landscapes ... 22

1.6 Significance of this study .. 24
1.7 Aims and objectives ..26

1.7.1 Overall project aims ..26

1.7.2 Specific research objectives ...26

1.7.3 A priori null hypothesis of study ..26

CHAPTER 2 METHODS ...27

2.1 Study area ...28

2.2 Study design and site selection ...31

2.2.1 Study design ..31

2.2.2 Drought and fire disturbance ...31

2.2.3 Flood and land-use disturbance ...31

2.3 Field and laboratory procedures ..34

2.3.1 Collection and processing methods for macroinvertebrates, physical habitat and water quality characteristics ...34

2.4 Data analysis ..35

2.4.1 Macroinvertebrate primer analysis ...35

2.4.2 Limitations of data analysis ...36

CHAPTER 3 RESULTS ...38

3.1 Outline of results ..39

3.2 Discharge ...39

3.3 Macroinvertebrate Community Composition ..42

3.3.1 Seasonal differences in macroinvertebrate communities between autumn and spring: ..42
3.3.2 Differences in macroinvertebrate communities between creeks: Lees, Condor and control sites: ... 44

3.3.2.1 Differences in macroinvertebrate communities between creeks in autumn. ... 44

3.3.2.2 Differences in macroinvertebrate communities between creeks in spring. ... 45

3.3.3 The effects of land-use on macroinvertebrate communities: native, pine and control sites: ... 48

3.3.3.1 Differences in macroinvertebrate communities at native and pine vegetation sites in autumn ... 48

3.3.3.2 Differences in macroinvertebrate communities at native and pine vegetation sites in spring .. 50

3.3.4 Effects of disturbance on macroinvertebrate communities: Before and after fire and flood disturbance: ... 54

3.3.4.1 Differences in macroinvertebrate communities before and after disturbance in autumn ... 54

3.3.4.2 Differences in macroinvertebrate communities before and after disturbance in spring ... 57

3.3.5 Relative abundance of 6 most dominant taxa in stream macroinvertebrate communities: .. 62

CHAPTER 4 DISCUSSION ... 66

4.1 Seasonal differences in macroinvertebrate community composition in the LCC ... 67

4.2 Flow related disturbance: Response of stream macroinvertebrate communities to changes in stream flow in relation to drought and flood in the LCC .. 67

4.3 Fire: Response of stream macroinvertebrate communities to fire disturbance in the LCC ... 71
4.4 Land-use: Response of stream macroinvertebrate communities to land-use disturbance in the LCC

4.5 Conclusions

REFERENCES

APPENDICES
LIST OF TABLES

Table 1.1 Disturbance types proposed by Lake (2000) and potential responses by stream macroinvertebrate communities…………………………………………………………8

Table 2.1 Native and pine replicates on Lees, Condor and control sites, collected in autumn and spring of each year for the study sampling period (1994-2013)…………33

Table 2.2 Sampling site locations and characteristics of the rivers…………………………34

Table 3.1 ANOSIM results for comparison of autumn and spring sites on Lees and Condor Creeks in the LCC…………………………………………………………………………43

Table 3.2 Macroinvertebrate taxa defined from SIMPER analysis on relative abundance data that discriminate between autumn and spring sites…………………43

Table 3.3 ANOSIM results for all autumn comparisons of creeks in the LCC………45

Table 3.4 Macroinvertebrate taxa defined from SIMPER analysis on relative abundance data that discriminate between control sites and Lees and Condor Creek sites in autumn…………………………………………………………………………………………45

Table 3.5 ANOSIM results for spring comparisons of creeks in the LCC…………47

Table 3.6 Macroinvertebrate taxa defined from SIMPER analysis on relative abundance data that discriminate between control sites and Lees and Condor Creek sites in spring……………………………………………………………………………………….47

Table 3.7 ANOSIM results for autumn comparisons of land-use types in the LCC…49

Table 3.8 Macroinvertebrate taxa defined from SIMPER analysis on relative abundance data that discriminate between control sites and native and pine sites in autumn……………………………………………………………………………………….50

Table 3.9 ANOSIM results for spring comparisons of land-use types on Condor Creek…………………………………………………………………………………………51

Table 3.10 Macroinvertebrate taxa defined from SIMPER analysis on relative abundance data that discriminate between control sites and native and pine sites on Condor Creek in spring…………………………………………………………………………52
Table 3.11 ANOSIM results for spring comparisons of land-use types on Lees Creek……..53

Table 3.12 Macroinvertebrate taxa defined from SIMPER analysis on relative abundance data that discriminate between control sites and native and pine sites on Lees Creek in spring……54

Table 3.13 ANOSIM results for autumn comparisons of disturbance types in the LCC……..55

Table 3.14 SIMPER analysis of sampling sites on Lees and Condor creeks (native and pine), before and after fire and flood disturbance in autumn, indicating taxa responsible for similarity of sites between groups………56

Table 3.15 ANOSIM results for spring comparisons of disturbance types on Condor Creek……..58

Table 3.16 SIMPER analysis of sampling sites on Condor Creek (native and pine), before and after fire and flood disturbance in spring, indicating taxa responsible for similarity of sites between groups………59

Table 3.17 ANOSIM results for spring comparisons of disturbance types on Lees Creek……..60

Table 3.18 SIMPER analysis of sampling sites on Lees Creek (native and pine), before and after fire and flood disturbance in spring, indicating taxa responsible for similarity of sites between groups………61
LIST OF FIGURES

Figure 1.1 Characteristics of disturbance and factors that drive stream macroinvertebrate community composition after disturbance……………………6

Figure 1.2 Disturbance types proposed by Lake (2000) and potential responses by stream macroinvertebrate communities (A. Pulse, B. Press, C. Ramp)………………..9

Figure 1.3 How multiple disturbance types (A. Pulse, B. Press, C. Ramp) proposed by Lake (2000) and Collier and Quinn (2003) interact within the landscape………………9

Figure 2.1 Location of study sites on Condor and Lees Creeks in the Lower Cotter Catchment in the Australian Capital Territory (ACT) and control sites from Goodradigbee tributaries in New South Wales (NSW)…………………………30

Figure 2.2 Study design and data collection based on disturbance events in the Lower Cotter Catchment (ALS 2013)…………………………………………………………33

Figure 3.1 Mean daily discharge for Condor creek in ML/Day for the study period (A. autumn 1994-autumn 2013) in relation to long-term mean daily discharge (B.)………40

Figure 3.2 Mean monthly discharge 1 month prior to macroinvertebrate sampling date in autumn (A.) and spring (B.) in Condor Creek, with the standard deviation about the mean……………………………………………………………………………………41

Figure 3.3 Non-metric multidimensional scaling ordination plot (nMDS) and Kruskal stress value (= 0.17) based on fourth root transformed relative abundance macroinvertebrate community data from sampling sites in autumn and spring………42

Figure 3.4 Non-metric multidimensional scaling ordination plot (nMDS) and Kruskal stress value (= 0.17) based on fourth root transformed relative abundance macroinvertebrate community data from sampling sites on Lees, Condor and control creeks in autumn……………………………………………………………………44

Figure 3.5 Non-metric multidimensional scaling ordination plot (nMDS) and Kruskal stress value (= 0.16) based on fourth root transformed relative abundance macroinvertebrate community data from sampling sites on Lees, Condor and control creeks in spring……………………………………………………………………46
Figure 3.6 Non-metric multidimensional scaling ordination plot (nMDS) and Kruskal stress value (= 0.17) based on fourth root transformed relative abundance macroinvertebrate community data from native and pine sampling sites on Lees and Condor creeks in the LCC and sampling sites on control creeks from Goodradigbee tributaries, in autumn……………………………………………………………………49

Figure 3.7 Non-metric multidimensional scaling ordination plot (nMDS) and Kruskal stress value (= 0.13) based on fourth root transformed relative abundance macroinvertebrate community data from native and pine sampling sites on Condor Creek in the LCC and sampling sites on control creeks from Goodradigbee tributaries, in spring. …………………………………………………………………….51

Figure 3.8 Non-metric multidimensional scaling ordination plot (nMDS) and Kruskal stress value (= 0.16) based on fourth root transformed relative abundance macroinvertebrate community data from native and pine sampling sites on Lees Creek in the LCC and sampling sites on control creeks from Goodradigbee tributaries, in spring. ……………………………………………………………………………53

Figure 3.9 Non-metric multidimensional scaling ordination plot (nMDS) and Kruskal stress value (= 0.17) based on fourth root transformed relative abundance macroinvertebrate community data from before and after fire and flood disturbance in the LCC, in autumn. ………………………………………………………………………55

Figure 3.10 Non-metric multidimensional scaling ordination plot (nMDS) and Kruskal stress value (= 0.07) based on fourth root transformed relative abundance macroinvertebrate community data from before and after fire and flood disturbance on Condor creek in the LCC, in spring. ……………………………………………………………………………58

Figure 3.11 Non-metric multidimensional scaling ordination plot (nMDS) and Kruskal stress value (= 0.11) based on fourth root transformed relative abundance macroinvertebrate community data from before and after fire and flood disturbance on Lees creek in the LCC, in spring. ……………………………………………………………………………60

Figure 3.12 Mean relative abundance of the six most dominant taxa occurring at native, pine and control sampling sites in autumn over the entire study period (1994-2013)………………………………………………………………………………63
Figure 3.13 Tukey-Kramer multiple comparisons test results for mean relative abundance of the six most dominant taxa occurring at native and pine sites across years in autumn……64

Figure 3.14 Mean relative abundance of the six most dominant taxa occurring at native, pine and control sampling sites in spring over the study period (1994-2013)… 65

Figure 4.1 Regeneration of native riparian vegetation after the 2003 Canberra bushfires, situated in the upper areas of Condor Creek in autumn 2005 (A.) and in the upper areas of Lees Creek in autumn 2005 (B.) ……………………………………………………………73