MULTIPLE JOINT PROPRIOCEPTION IN
MOVEMENT DISCRIMINATION

Jia Han
BSc. MSc.

Thesis submitted for the degree of Doctor of Philosophy
The University of Canberra
July 2013
ABSTRACT

To produce precise and coordinated movements, the human brain processes proprioceptive information concurrently from multiple joints around the body. However, few studies have investigated proprioception across multiple joints independently or simultaneously in the one testing session, and the understanding of proprioceptive mechanisms that underlie functional movement control is limited. The aim of this thesis was to explore proprioceptive ability across multiple joints, using an active movement extent discrimination task involving movements that are similar to normal joint function in sports and daily activities. A series of seven studies was conducted that began with developing an active movement extent discrimination apparatus (AMEDA) for assessing the multiple joints involved in finger pinch proprioception. The studies utilized this and another four versions of the AMEDA to enable systematic investigation of proprioceptive acuity at five sites around the body – the ankle, knee, spine, shoulder and fingers – in both athletes and non-athletic healthy young adults.

The first study (presented in Chapter 3) involved the development of a novel device for the measurement of functional finger pinch movement discrimination, and the chapter presents details of its construction, reliability and potential applications. The active finger movement extent apparatus (AFMEDA) was designed to be simple in construction and light in weight, and to fulfill the ecological validity criteria for assessing active movement function – using active movements, at normal speed and without physical constraints. The complete test included 15 familiarization trials and 50 testing trials, taking only 10 minutes. Reliability testing showed that the AFMEDA had a good reliability (ICC = 0.85) for assessing proprioceptive ability during functional pinch movements. The mid-range Area Under the Curve (AUC) discrimination scores (0.7 - 0.8) found with healthy young adults mean that factors thought to diminish discrimination acuity (e.g., hand injury) or improve it (e.g., having expert finger skills) could be examined with the device. The ease of use and portability of the novel device facilitate its use for assessing functional hand proprioception as part of clinical and epidemiological studies.
In Study 2 (Chapter 4), the effect of elastic resistance on proprioceptive acuity at the fingers was investigated. Sensitivity of pinch movement discrimination between the thumb and index finger was tested in sixteen participants, with and without elastic resistance. Results showed that adding elastic resistance from a spring to the thumb-index finger pinch task did not affect accuracy of pinch discrimination when measured as either the AUC ($F_{1, 15} = 0.07, p = 0.80$), or as the just noticeable difference (JND) ($F_{1, 15} = 1.78, p = 0.20$). The finding that elastic resistance did not affect finger pinch discrimination suggested that return tension on equipment lever arms has a practical but not perceptual function. The active finger pinch movement discrimination task, with or without elastic resistance, could be used for hand proprioceptive training, and as a screening tool to identify those with aptitude or decrements in fine finger movement control.

In the third study (Chapter 5), the AFMEDA and another four versions of AMEDA were used together to test proprioceptive ability at the fingers, shoulder, knee and ankle on the dominant side of body, and a further test was conducted at the spine. Movement discrimination scores were obtained from forty right-handed healthy young adults. Pearson correlation analysis showed that there was no significant correlation between the discrimination scores from the five sites (all $r \leq .21$, all $p \geq .20$). This finding extended a previous report of non-significantly correlated proprioception test scores at two lower limb sites, and the findings taken together suggest that rather than proprioception being a global, general-body ability, the proprioceptive ability that underlies movement control is site-specific.

Study 4 (Chapter 6) expanded the proprioception testing at multiple joints to testing both sides of the body. After selecting twelve participants with strong right arm and right leg preference, active movement proprioception at four pairs of upper and lower limb joints – the fingers, shoulders, knees and ankles – were tested using the AMEDAs. Consistent with the finding from Study 3 that there are no significant correlation between different body sites, results from this study showed that only correlations between the proprioceptive accuracy scores for the right and left sides at the same joint were large and significant (ankles 0.93, knees 0.89, shoulders 0.87, fingers 0.91, $p \leq 0.001$; with all other values of $r \leq 0.40$, $p \geq 0.20$). In addition, proprioceptive performance on the non-preferred left side of the body was found to be significantly better than the preferred right side at all four joints tested (overall $F_{1, 11} = 36.36, p < 0.001$, partial $\eta^2 = 0.77$).
The results point to both a side-general effect and a site-specific effect in the integration of proprioceptive information during active movement tasks, whereby the non-preferred limb/hemisphere system is specialized in the utilization of the best proprioceptive sources available at each specific joint, but the combination of sources employed differs between body sites.

In Study 5 (Chapter 7), a proprioceptive task was designed to be performed simultaneously by two hands, in order to examine individuals’ ability to process bimanual, simultaneous proprioceptive information. Both right- and left-handed young adults, ten for each handedness group, were investigated using duplicate AFMEDAs, with one at each hand. In line with previous findings from other laboratories, a non-preferred limb/hemisphere superiority effect was observed, where the non-preferred hands of right- and left-handed individuals performed overall significantly better than their preferred hands. For all participants, bimanual movement discrimination scores were significantly lower than scores obtained in the unimanual task. However, the magnitude of the performance reduction from the unimanual to the bimanual task was significantly greater for left-handed individuals. The effect whereby bimanual proprioception was disproportionately affected in left-handed individuals can be attributed to enhanced neural communication between hemispheres in left-handed individuals leading to less distinctive separation in the cerebral cortex with respect to information obtained from the two hands.

The last two studies (Chapters 8 and 9) focused on athletes’ proprioceptive ability at multiple joints, across a variety of sports. Study 6 (Chapter 8) was the preliminary study, in which ankle inversion movement discrimination scores were obtained from twenty non-athletic controls and one hundred athletes, competing at three different levels in football, swimming, badminton, sports dancing and aerobic gymnastics. Athletes showed better ankle movement discrimination scores than non-athletic controls ($p < 0.005$) but there was no significant difference between sports groups. When all sports groups combined, ankle proprioception scores were significantly correlated with sport competition level attained ($\rho = 0.45$, $p < 0.001$), but not with years of sport-specific training. Logistic regression analysis demonstrated that ankle proprioception score ($p = 0.001$) and years of training ($p = 0.009$) were the two significant predictors in an equation
that could successfully classify 80% of the athletes as top-level or lower, highlighting the importance of good ankle proprioception in athlete success.

Study 7 (in Chapter 9) included data from another four AMEDA tests at the knee, spine, shoulder and fingers with the same athlete groups as before. Step-wise multiple regression analysis was conducted, with competition level as the dependent variable and AUC proprioception sensitivity scores at the ankle, knee, shoulder, spine, and finger, and years of sport-specific training, entered as independent variables. Results showed that 30% of the variance in the sport competition level an athlete had achieved could be accounted for by an equation that included, sequentially, ankle movement discrimination score, years of sport-specific training, and shoulder and spinal movement discrimination scores (p < 0.001). The mean proprioceptive acuity score over these three predictor joints was significantly correlated with sport competition level achieved (r = 0.48, p < 0.001), highlighting the importance of proprioceptive ability in underpinning elite sports performance. Although years of sport-specific training correlated with an athlete’s sport competition level achieved (r = 0.29, p = 0.004), years of sport-specific training was not correlated with proprioceptive acuity either averaged or considered singly from any joint tested (all r ≤ 0.13, p ≥ 0.217), suggesting that the amount of improvement in proprioceptive acuity due to training may therefore be constrained by biologically-determined factors.
PUBLICATIONS AND PRESENTATIONS

Published peer-reviewed journal articles

Peer-reviewed journal article under review

Published peer-reviewed conference proceedings

Peer-reviewed conference proceeding under review

Conference presentations

1. *Australian Conference of Science and Medicine in Sport, Fremantle, Perth, AUS*
 Han J, Waddington G, Anson J, Adams R (2011) Position discrimination of the fingertips during dynamic movement varies with the task undertaken. (Poster presentation)

2. *American College of Sports Medicine Annual Meeting, San Francisco, California, USA*
 Han J, Waddington G, Anson J, Adams R (2012) Ankle movement discrimination is correlated with sports performance levels. (Poster presentation)

3. *International Convention on Science, Education and Medicine in Sport (ICSEMIS) Conference, Glasgow, Scotland, UK*

4. *Canberra Health Annual Research Meeting, Canberra, ACT, AUS*
 Han J, Waddington G, Adams R, Anson J (2012) Ability to discriminate movements at multiple joints around the body: global or site-specific. (Poster presentation)

5. *Canberra Health Annual Research Meeting, Canberra, ACT, AUS*
ACKNOWLEDGEMENTS

I am proud to have been the first student to undertake a research higher degree under the Memorandum of Understanding between the University of Canberra and the Shanghai University of Sport. Therefore, I would like to begin by thanking both the University of Canberra and the Shanghai University of Sport for supporting my candidature in this degree. The Faculty of Health generously provided support by sponsoring my international tuition fees and ensuring financial assistance was available to attend conferences within Australia and overseas. The Shanghai University of Sport kindly provided laboratory space to facilitate data collection.

My three supervisors were fantastic – I cannot thank them enough for all that they have done for me. Their professionalism in developing my skills, nurturing my growth as a researcher and ensuring that I reached their exacting standards cannot be overstated. My primary supervisor, Dr Judith Anson, was my mentor throughout the journey, with many extended discussions in her office, over coffees and at her home. She was always available, with some conversations even at three o’clock in the morning. Professor Gordon Waddington assisted in the conceptualisation of this research and oversight of the laboratory setup in China – when it was extremely hot. His supervision, enthusiasm and encouragement throughout my candidature created an enjoyable doctoral experience. Dr Roger Adams’ knowledge of the literature helped make my final thesis grounded in theory; working with him on data analysis enabled the data to come alive. Our discussions travelling to and from Sydney enabled synthesis of my ideas, and the prawn entrée in the Sydney Orchid Thai restaurant is a great memory. As I finalise this thesis, I look forward to continuing my relationship with my supervisors. We are already planning future collaborations.

I would also like to thank members of staff at the two universities. At the University of Canberra, I would like to thank Maryanne Simpson and Joelle Vandermensbrugghe. Maryanne helped me navigate the administrative jungle and provided administrative support whenever I needed it. Joelle oversaw academic training workshops that provided essential skills and information. At the Shanghai University of Sport, I would like to acknowledge Professor Peijie Chen, Professor
Xingquan Yang, Professor Yunya Zhang, Associate Professor Jianqiang Lv, Associate Professor, Liping Lu, Associate Professor Jue Yang, Associate Professor Fuying Shi, Associate Professor Yinri Jin, Senior Lecturer Xiaoyan Mo, Senior Lecturer Liuke Fan, Senior Lecturer Jianqing Wang and Senior Lecturer Yiqing Chen for their kind assistance in the establishment of a laboratory and my data collection in China.

This work could not have been undertaken without the participants who freely gave their time to undertake testing. They spread the word and encouraged their friends to be involved. Also, I would like to thank my students at the Shanghai University of Sport, who helped me with setting up the testing. I couldn’t have done it without you: Wei Wu, Yu Deng, Xiong Zhang, Yangfang Wang, Guisheng Li, Danhuan Wang, Min Wu, Jing Qiao, and Wenjun Lu.

I would like to thank the people around me – their continual caring enabled me to survive the ups and downs of being a PhD student. My best friend Chenhui Zeng provided endless free meals, offered his drawing skills, put up with me being stressed and antisocial. My beautiful wife continues to support me financially and spiritually even though she finds my hours of work beyond her comprehension.

Last and most importantly, thank you to my Mum, Dad, sisters and all family members for the support you have given in my life. Thank you for all your love, generosity and for having faith in me to make the right decisions. Although we now live so far apart, our hearts are always together.

衷心感谢！
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>CERTIFICATE OF AUTHORSHIP OF Thesis</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>CO-AUTHORS’ DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>PUBLICATIONS AND PRESENTATIONS</td>
<td>ix</td>
</tr>
<tr>
<td>PUBLISHED PEER-REVIEWED JOURNAL ARTICLES</td>
<td>ix</td>
</tr>
<tr>
<td>PEER-REVIEWED JOURNAL ARTICLE UNDER REVIEW</td>
<td>x</td>
</tr>
<tr>
<td>PUBLISHED PEER-REVIEWED CONFERENCE PROCEEDINGS</td>
<td>x</td>
</tr>
<tr>
<td>PEER-REVIEWED CONFERENCE PROCEEDING UNDER REVIEW</td>
<td>x</td>
</tr>
<tr>
<td>CONFERENCE PRESENTATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>1</td>
</tr>
<tr>
<td>GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>7</td>
</tr>
<tr>
<td>REVIEW OF LITERATURE</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Proprioception</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Measurement of Proprioception</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Mechanoreceptors</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Combination of Afferents in Proprioception</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Proprioceptive Afferent Pathways</td>
<td>30</td>
</tr>
<tr>
<td>2.6 Proprioception at Multiple Joints</td>
<td>33</td>
</tr>
</tbody>
</table>
Multiple Joint Proprioception in Movement Discrimination

2.7 Limb/Hemisphere asymmetries in proprioceptive ability .. 36
2.8 Proprioception in sports .. 46
2.9 Summary .. 49
2.10 Aims of the thesis .. 51

CHAPTER 3 .. 52

The active movement extent discrimination apparatus (AMEDA) and area under the receiver operating characteristic curve (AUC) data analysis ... 52

3.1 Origin of AMEDA method for proprioception test .. 53
3.2 Development of joint-specific AMEDAs for testing proprioceptive acuity at a range of body sites .. 58
3.3 Area under the ROC curve (AUC) data analysis ... 61

APPENDIX TO CHAPTER 3 ... 70

A novel device for the measurement of functional finger pinch movement discrimination ... 70

Abstract .. 71
Introduction ... 72
Methods and materials ... 73
Results .. 76
Discussion .. 77

CHAPTER 4 .. 79

Does elastic resistance affect finger pinch discrimination .. 79

Abstract .. 80
Introduction ... 81
Method .. 83
Results .. 86
Discussion .. 88
CHAPTER 5 .. 93

ABILITY TO DISCRIMINATE MOVEMENTS AT MULTIPLE JOINTS AROUND THE BODY: GLOBAL OR SITE-SPECIFIC ... 93

ABSTRACT ... 94

INTRODUCTION ... 95

METHOD .. 97

RESULTS ... 100

DISCUSSION .. 101

CHAPTER 6 .. 103

PROPRIOCEPTIVE PERFORMANCE OF BILATERAL UPPER AND LOWER LIMB JOINTS: SIDE-GENERAL AND SITE-SPECIFIC EFFECTS .. 103

ABSTRACT ... 104

INTRODUCTION ... 105

METHODS .. 108

RESULTS ... 113

DISCUSSION .. 117

ACKNOWLEDGEMENTS ... 123

CHAPTER 7 .. 124

BIMANUAL PROPRIOCEPTIVE PERFORMANCE DIFFERS FOR RIGHT- AND LEFT-HANDED INDIVIDUALS ... 124

ABSTRACT ... 125

INTRODUCTION ... 126

METHODS .. 129

RESULTS ... 132

DISCUSSION .. 134

ACKNOWLEDGEMENTS ... 136
LIST OF TABLES

Table 2.1 Comparison of different apparatus employed in TTDPM, JPR and AMEDA proprioception tests, at the ankle, knee, shoulder and spine ... 12

Table 2.2 Comparison of protocols used in TTDPM, JPR and AMEDA proprioception tests 19

Table 3.1 A raw data sheet example describing a participant’s responses (absolute judgments) to each of the movement extents presented randomly .. 63

Table 3.2 A 5 × 5 matrix with cells containing the frequency of the participant’s judgments (responses 1 to 5) for each actual movement extent (positions 1 to 5). Because there are 10 presentations of each movement extent, the row totals are always 10, whereas the column totals reflect how often the participant used a particular response value ... 64

Table 3.3 Cumulative frequency for the participant of movement extent judgments for the movement extents 1 and 2 ... 64

Table 3.4 Cumulative probabilities of judging movement extents 1 and 2 to be movement extent 1 for a range of decision criteria, whereby an increasing number of other responses are considered as correct responses ... 65

Table 3.5 Summary of AMEDA studies from 1999 to 2012 ... 68

Table 5.1 Mean movement discrimination scores at the ankle, knee, spine, shoulder and fingers, and the matrix of Pearson correlations between discrimination scores at the five body sites. Critical r for two-tailed significance at 0.05 is 0.31, with $n = 40$, df = 38. All p values ≥ 0.20.. 101
Table 6.1 Mean movement discrimination scores (M) with standard deviations (SD) at different body sites. F ratios and p values showed a significant difference between the right and left side at each body site.

Table 6.2 Correlations between movement discrimination scores at different sites and sides...

Table 8.1 Participant information and ankle movement discrimination

Table 8.2 Spearman’s Correlations between ankle movement discrimination AUC scores and competition level, years of sport-specific training, age, height and body mass, for the different sports groups and the control group.

Table 9.1 Participant information
LIST OF FIGURES

Figure 2.1 Neuromuscular spindle intrafusal fibres and afferent innervations (Adapted from Sargant (2000)) ... 23

Figure 2.2 Proprioceptive afferent from skin, muscle and joint enter the spinal cord via the dorsal roots. (Adapted from Stillman (2002)) ... 31

Figure 2.3 Motor and sensory pathways between the brain and the body; each hand is served by the contralateral cerebral hemisphere (Adapted from Springer and Deutsch (1998)) 36

Figure 2.4 The preferred right arm/hemisphere relies more on visual feedback for movement, whereas the non-preferred left arm/hemisphere depends more on proprioceptive information (Adapted from Goble and Brown (2008b)) ... 39

Figure 3.1 Munsterberg’s apparatus used for investigation of arm movement comparisons (Adapted from Titchener (1905)) ... 54

Figure 3.2 Fullerton and Cattell’s apparatus for studying movement extent discrimination of the arm (Adapted from Fullerton and Cattell (1892)) ... 54

Figure 3.3 Myers’ apparatus for measuring the threshold of just-noticeable arm movement (Adapted from Myers (1911)) ... 55

Figure 3.4 Hollingworth’s carriage with wooden wheels in order to reduce noise in arm movement studies (Adapted from Hollingworth (1909)) ... 56
Figure 3.5 Ankle AMEDA testing condition (Adapted from Waddington and Adams (1999b)). The extent of ankle inversion was varied by using wooded blocks of different heights (Adapted from Symes et al. (2010)), and was later updated to an electronic version (Waddington and Adams 2000). 59

Figure 3.6 Versions of AMEDA for assessing lower-limb proprioceptive acuity during knee flexion, hip extension and flexion. (Adapted from Waddington et al. (2000a), Cameron et al. (2008) and Cameron and Adams (2003)) ... 60

Figure 3.7 Shoulder AMEDA used in two conditions for assessing proprioceptive acuity during shoulder flexion and rotation (Adapted from Naughton et al. (2002) and Whiteley et al. (2008)) .. 60

Figure 3.8 Lumbar spinal AMEDA and cervical spinal AMEDA for assessing proprioceptive acuity during lumbar spine flexion and cervical spine rotation (Adapted from Hobbs et al. (2011) and Lee et al. (2005)) .. 61

Figure 3.9 Receiver Operating Characteristic (ROC) Curve for a participant attempting to discriminate between movement extents 1 and 2 ... 65

Figure 3.10 Receiver Operating Characteristic (ROC) Curve from Figure 3.9 divided into component areas under the curve for calculation of the AUC ... 66

Figure 3.11 a-b-c depicts the operation of the finger functional pinch movement discrimination equipment. a depicts the rest position before beginning the pinch movement discrimination task. b illustrates one of the five fixed pinch positions. c depicts the return to the start position. d illustrates the test as undertaken by participants ... 74
Figure 4.1 Panel A depicts the side view of the Active Finger Movement Extent Discrimination Apparatus (AFMEDA) and the set up of the removable springs. Panel B illustrates the test as undertaken by participants. Panels C-D-E depict one trial of the thumb and index finger pinch movement discrimination task. Panel C also shows the fixed rest position before beginning the pinch movement discrimination task. Panel D illustrates one of the five fixed pinch positions, and Panel E depicts return to the start position.

Figure 4.2 The effect of elastic resistance on finger pinch movement discrimination of both the right and left hands expressed as Just Noticeable Difference (JND). The group mean JND values for the spring-off and spring-on conditions of both the right and left hands are shown, with bars representing the standard errors.

Figure 4.3 The effect of elastic resistance on finger pinch movement discrimination of both the right and left hands expressed as Area Under the Curve (AUC) scores. The group means for the AUC for the spring-off and spring-on conditions of both the right and left hands are shown, with bars representing the standard errors.

Figure 5.1 Panel 1A depicts the side view of the Active Finger Movement Discrimination Apparatus (AFMEDA). The examiner manually rotates the wheel to generate five pinch displacement distances. Panels 1B-1C-1D depict the sequence of events during one trial of the thumb and index finger pinch movement discrimination task, from the fixed rest position before beginning the pinch movement, to one of the five fixed pinch positions, then return to the start position. During the AFMEDA test, the apparatus and the testing hand were covered to prevent the use of visual information.

Figure 6.1 a) illustrates the four movement extent discrimination tasks for the ankle, knee, shoulder and fingers; b) shows mean movement discrimination scores (AUC ± SD) for both sides of the body at each site (* p < 0.05).
Figure 6.2 Movement discrimination scores of each participant for the ankles, knees, shoulders and fingers. Letters A – L represent the same participant’s performance on the different movement discrimination tasks. The different ranges on the Y-axis reflect differences in the difficulty of the four tasks. 116

Figure 7.1 Depiction of setup of the unimanual active finger pinch movement discrimination test. To examine bimanual execution of pinch discrimination, the apparatus was duplicated to allow simultaneous application by both hands. 130

Figure 7.2 Mean pinch discrimination scores for the left and right hands of the RH and LH groups when performing the Unimanual or Bimanual versions of the task. First report of judgment in the bimanual condition was randomly left or right. The icons show the hand being tested with the screens in place. The error bars represent one standard error. 133

Figure 8.1 (A) Participant standing on the ankle Active Movement Extent Discrimination Apparatus (AMEDA) platform. (B) Participant making an active inversion movement which rotates the plate until the outer side rim of the moveable plate contacted an adjustable metal stop. (C) Participant returning the plate to the horizontal fixed position before indicating the extent of inversion experienced. 142

Figure 8.2 Comparisons of mean ankle movement discrimination scores with standard deviations (all sports combined) between different competition levels and between different years of sport-specific training (YOT) conditions. Data analysis showed that each competition level was significantly different from each other (* $p < 0.05$, **** $p < 0.0001$), but there was no significant difference between any two YOT conditions (NS, $p > 0.05$). 145
Figure 9.1 Active Movement Extent Discrimination Apparatus for testing proprioception at the 5 body sites: a, spine flexion; b, shoulder flexion; c, knee flexion; d, ankle inversion; and e, finger pinch. ... 159

Figure 9.2 Mean proprioceptive acuity scores from the ankle, shoulder and spine active movement extent discrimination tasks, for the three competition level subgroups within each of the five sports. Being at a higher competition level was associated with better proprioceptive acuity, measured as averaged Area Under the Curve (AUC) scores over the three joints. Scores from the highest level athletes, Chinese national top 6 and competing internationally are represented by filled triangle symbols, Chinese national top 16 by filled circles, and for the Chinese national top 32 or regional top 3, filled squares are used ... 163