A dynamic microsimulation approach to simulating the impact of the labour force on issues relating to the ageing population

A thesis submitted in fulfilment of a Doctor of Philosophy Degree

Marcia Karen Keegan

December 2009
Abstract

Accelerated population ageing is expected to create severe fiscal pressures for governments. With 12 Commonwealth agencies as research partners, NATSEM is currently constructing the Australian Population and Policy Simulation Model (APPSIM), a dynamic microsimulation model, to simulate our likely social and economic futures and the future distributional impact of policy changes. The APPSIM model takes the 2001 Census one per cent sample file as its base data and then ages the individuals within the sample, year by year, to 2051.

Labour force participation will become an increasingly important issue as the population ages. People who are employed pay taxes and claim less social security, improving the budget balance and making more funds available for Australia’s increasing health care, pensions and aged care needs. Promoting labour force participation has been suggested by Treasury and the Productivity Commission as a means of reducing future fiscal pressures caused by the ageing population.

Simulating the labour force first requires a solid understanding of labour force participation patterns in Australia; their historical context; legislation and social conditions that guided labour force participation; and how these patterns are expected to change in the future. Given the microsimulation nature of APPSIM, it is also important to understand the process undertaken at the individual level to decide on whether to work and if so, when and how much.

This thesis begins by reviewing the literature on Australian labour force patterns and international examples of dynamic microsimulation models. It explains in some detail the development of the labour force module for APPSIM, including modelling methods used, the use of separate equations to model different groups and labour force processes and the explanatory variables considered. It then validates the model by comparing its outcomes to external benchmarks.

Finally, the usefulness of the module is demonstrated by assessing the impact of three policy scenarios on labour force participation: increasing Year 12 and university attainment, increasing the labour force participation of single mothers with school-age
children, and reducing the incidence and impact of disability among workers aged 45-64. These policy scenarios demonstrate that higher educational attainment will result in higher savings in the future, but the gains will take decades to appear. Increasing the labour force participation of single mothers has less of an impact on overall superannuation savings, but the impact is focused on people who would have had very low levels of superannuation. Reducing the incidence and impact of disability improves superannuation balances as people are able to work for longer, and has the most immediate impact on superannuation savings. These simulations illustrate the fact that policies targeted towards people who are likely to have lower superannuation balances can be of great benefit.

Future research in this area could be targeted towards a more detailed model of the labour force. As detailed longitudinal data becomes more widely available and computer power increases, there is the potential to simulate behavioural response to changes in take-home income and a wider range of explanatory factors in labour force participation.
Acknowledgements

The author would like to gratefully acknowledge the funding provided by the Australian Research Council (under grant LP0562493), and by the 12 research partners to the grant: Treasury; Broadband, Communications and the Digital Economy; Education, Employment and Workplace Relations; Health and Ageing; Innovation, Industry, Science and Research; Finance and Deregulation; Families, Housing, Community Services and Indigenous Affairs; Immigration and Citizenship; Prime Minister and Cabinet; the Productivity Commission; Centrelink; and the Australian Bureau of Statistics.

This thesis uses unit record data from the Household, Income and Labour Dynamics in Australia (HILDA) Survey. The HILDA Project was initiated and is funded by the Australian Government Department of Families, Housing, Community Services and Indigenous Affairs (FaHCSIA) and is managed by the Melbourne Institute of Applied Economic and Social Research (Melbourne Institute). The findings and views reported in this paper, however, are those of the author and should not be attributed to either FaHCSIA or the Melbourne Institute.

I wish to gratefully acknowledge Ann Harding, the chair of my supervisory panel, and Simon Kelly, my secondary supervisor, for their academic advice, patience, encouragement and guidance in the completion of this PhD. Thanks also go to Shuangzhe Liu, Robert Breunig and Bruce Bacon for technical advice. I also acknowledge the financial support and access to facilities provided by the National Centre for Social and Economic Modelling at the University of Canberra. Finally, special thanks go to my husband Rick for all his support and encouragement.

Marcia Keegan
National Centre for Social and Economic Modelling
University of Canberra
170 Haydon Drive
BRUCE ACT 2617
Australia
ABSTRACT

ACKNOWLEDGEMENTS

Table of Figures and Tables

Aims of this research

Synopsis of thesis

PART I: LABOUR SUPPLY IN AUSTRALIA

CHAPTER 1. INTRODUCTION

1.1. Factors affecting the labour supply of groups/individuals

1.1.1. Job-related factors

1.1.2. Institutional factors

1.1.3. Individual factors

1.2. Labour force participation and the ageing population

1.3. Increasing labour force participation as a possible means of minimising the fiscal gap

1.3.1. Can changing government policy increase labour force participation?

1.3.2. Does Australia have excess capacity in its human capital?

1.4. How to measure these impacts?

1.5. Summary of Chapter 1

CHAPTER 2. THE EVOLUTION OF LABOUR SUPPLY IN AUSTRALIA

2.1. Trends in labour force participation

2.1.1. Historical participation

2.1.2. Current labour force participation patterns

2.1.3. Projections of future labour force participation

2.2. International comparisons
2.2.1. Incidence of part-time employment 38
2.2.2. Working hours 40

2.3. A brief summary of Australia's social security system 42
2.3.1. Provision for retirees 43
2.3.2. Social welfare for working-aged people 46

2.4. Summary of Chapter 2 49

PART II: MODELLING LABOUR SUPPLY 50

CHAPTER 3. DYNAMIC MICROSIMULATION 50

3.1. Characteristics of DMSMs 53
3.1.1. Cohort or full cross section 53
3.1.2. Discrete vs continuous time 54
3.1.3. Behavioural vs arithmetic or probabilistic 56
3.1.4. Links to macro models or projections 60

3.2. Examples of dynamic microsimulation models 61
3.2.1. DYNAMOD 62
3.2.2. DYNASIM 65
3.2.3. DYNACAN 66
3.2.4. PENSIM 68
3.2.5. Lifepaths 70
3.2.6. SESIM 71
3.2.7. MOSART 73
3.2.8. SAGE 74

3.3. The APPSIM Model 76
3.3.1. Disability 78
CHAPTER 8. REDUCING THE INCIDENCE OF NON-PARTICIPATION DUE TO DISABILITY

8.1. Reasons for future reductions in disability among working aged people

8.2. Simulating labour force impacts of reduced disability in APPSIM

8.3. Summary of Chapter 8

CHAPTER 9. CONCLUSION

9.1. Contribution of this thesis to the international body of knowledge

9.2. A final caveat

Appendix A Definitions

Appendix B Tables

REFERENCES
Form B: Certificate of Authorship of Thesis

Except where clearly acknowledged in footnotes, quotations and the bibliography, I certify that I am the sole author of the thesis submitted today entitled –

A dynamic microsimulation approach to simulating the impact of the labour force on issues relating to the ageing population

I further certify that to the best of my knowledge the thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis.

The material in the thesis has not been the basis of an award of any other degree or diploma except where due reference is made in the text of the thesis.

The thesis complies with University requirements for a thesis as set out in

Ma/gia Keen

Signature of Candidate

Ann Harding

Signature of chair of the supervisory panel

Date: 18/12/09
Table of Figures and Tables

FIGURE 1.1 LABOUR FORCE PARTICIPATION, AGES 15-64 BY COUNTRY (2008)...........23

FIGURE 1.2 LABOUR FORCE PARTICIPATION RATES OF WOMEN AGED 30-34, OECD
COUNTRIES (2008) ...24

FIGURE 2.1 LABOUR FORCE PARTICIPATION BY SEX, AGE 15-64....................28

FIGURE 2.2 UNEMPLOYMENT AND PARTICIPATION RATES 1978-2009, PERSONS AGED
15+ ...29

FIGURE 2.3 LABOUR FORCE PARTICIPATION BY AGE AND SEX, 1981 AND 2005.....30

FIGURE 2.4 PARTICIPATION RATES ACROSS THE OECD 2007...........................36

FIGURE 2.5 AUSTRALIAN AND OECD MEDIAN PARTICIPATION RATES BY AGE
GROUP 2005...37

FIGURE 2.6 WOMEN'S EMPLOYMENT RATES, AUSTRALIA AND OVERSEAS (2008)...38

FIGURE 2.7 GENDER MAKEUP OF PART-TIME WORKERS, OECD 2008...............39

FIGURE 3.1 UTILITY FUNCTION AND BUDGET CONSTRAINT ON AN INDIVIDUAL....58

TABLE 3.1 SELECTED FEATURES OF MAJOR DYNAMIC MICROSIMULATION
MODELS ..61

FIGURE 3.2 THE ORDER OF THE MODULES IN APPSIM......................................78

FIGURE 4.1 FLOW CHART OF APPSIM'S LABOUR FORCE MODULE....................89

TABLE 4.1 TRANSITIONS BETWEEN LABOUR FORCE STATES FOR MALES AGED 15-
74 ..96

TABLE 4.2 TRANSITIONS BETWEEN LABOUR FORCE STATES FOR FEMALES AGED
15-74 ..96

FIGURE 4.2 THE MONTE CARLO PROCESS OF ALLOCATING LABOUR FORCE STATES
100
TABLE 4.3 WEEKLY EARNINGS BY EMPLOYMENT STATUS (S), PERSONS AGED 15-64

104

FIGURE 4.3 SELF EMPLOYMENT BY AGE ... 106

TABLE 4.4 FULL-TIME - PART-TIME QUARTERLY TRANSITIONS IMPUTED IN
APPSIM SIMULATIONS ... 109

FIGURE 4.4 SIMULATED AND ACTUAL LABOUR FORCE PARTICIPATION RATES OF
55-64 YEAR OLD MALES.. 114

FIGURE 4.5 PERCENTAGE OF THE POPULATION WHO ARE RETIRED BY AGE AND
SEX, 2006 115

FIGURE 4.6 EDUCATION AND PARTICIPATION AMONG PERSONS AGED 65 AND
OVER 118

FIGURE 5.1 INTERACTION OF MODULES WITHIN APPSIM 131

FIGURE 5.2 PERCENTAGE OF PEOPLE WHO ARE RETIRED, AGE 55-74, APPSIM AND
HILDA 2006, BY AGE AND SEX .. 133

FIGURE 5.3 LABOUR FORCE PARTICIPATION BY AGE AND SEX, APPSIM AND ABS
2009 134

FIGURE 5.4 PREVIOUS SIMULATIONS OF LABOUR FORCE STATUS OF FULL-TIME
STUDENTS, 2006 ... 135

FIGURE 5.5 LABOUR FORCE STATES OF FULL-TIME STUDENTS IN HILDA AND
APPSIM, 2006 .. 136

FIGURE 5.6 PRELIMINARY RESULTS - SELF EMPLOYED BY AGE IN HILDA AND
APPSIM, 2006 .. 137

FIGURE 5.7 FINAL RESULTS - SELF EMPLOYMENT BY AGE IN HILDA AND APPSIM,
2006 137

FIGURE 5.8 HOURS WORKED BY LABOUR FORCE STATUS AND SEX, HILDA AND
APPSIM 2006 ... 139

FIGURE 5.9 LABOUR FORCE STATES OF MEN IN 2049, APPSIM AND TREASURY
PROJECTIONS .. 141

FIGURE 5.10 LABOUR FORCE STATES OF WOMEN IN 2049, APPSIM AND TREASURY
PROJECTIONS .. 142
FIGURE 5.11 LABOUR FORCE TRANSITIONS IN HILDA AND APPSIM, 2004-2005 145
FIGURE 5.12 LABOUR FORCE STABILITY PATTERNS 2002 -2007, BY AGE, APPSIM AND HILDA 147
FIGURE 6.1 EMPLOYMENT AND UNEMPLOYMENT BY EDUCATION LEVEL, AGES 15-64, 2008 150
FIGURE 6.2 HIGHEST LEVEL OF EDUCATION ACHIEVED BY AGE GROUP 2007 152
FIGURE 6.3 HIGHEST LEVEL OF EDUCATION UNDER BASELINE AND HIGHER EDUCATION SCENARIOS, AGE 15-64 BY SEX, 2051 ... 157
FIGURE 6.4 PARTICIPATION BY SEX UNDER BASELINE AND HIGHER EDUCATION SCENARIOS, AGE 15-64, 2051 ... 158
FIGURE 6.5 PERCENTAGE OF POPULATION AGED 25-54 WITH A UNIVERSITY QUALIFICATION UNDER THE HIGHER EDUCATION SCENARIO, BY YEAR 159
TABLE 6.1 LABOUR FORCE PARTICIPATION UNDER TWO EDUCATION SCENARIOS, 2051, AGE 35-44 .. 160
FIGURE 6.6 LABOUR FORCE STATUS OF 35-44 YEAR OLDS BY SEX UNDER BASELINE AND HIGHER EDUCATION SCENARIOS, 2051 ... 161
TABLE 6.2 SIMULATED EFFECTS OF DIFFERENT EDUCATION SCENARIOS, 2051 ... 162
TABLE 6.3 ESTIMATED EFFECT OF HIGHER EDUCATION ON MEAN AND MEDIAN SUPERANNUATION OF 45-50 YEAR OLDS, 2051, ($000s) ... 163
FIGURE 6.7 ESTIMATED DISTRIBUTION OF SUPERANNUATION AMONG 45-50 YEAR OLDS UNDER HIGHER EDUCATION AND BASELINE SCENARIOS, 2051 163
FIGURE 7.1 LABOUR FORCE PARTICIPATION OF FEMALES AND MALES AGED 15-64 UNDER BASELINE AND WELFARE TO WORK SCENARIOS, 2051 171
FIGURE 7.2 LABOUR FORCE PARTICIPATION OVER THE LIFE CYCLE OF COHORT BORN BETWEEN 1987-1996 UNDER BASELINE AND WELFARE TO WORK SCENARIOS ... 171
TABLE 7.1 SIMULATED EFFECTS OF WELFARE TO WORK PARENTING PAYMENT REFORMS, 2051 .. 172
TABLE 7.2 EFFECT OF WELFARE TO WORK CHANGES ON MEAN AND MEDIAN SUPERANNUATION OF WOMEN, 2051 .. 173
FIGURE 7.3 SUPERANNUATION WEALTH OF WOMEN AGED 60-66, 2051

FIGURE 8.1 DISABILITY SUPPORT PENSION RECIPIENTS BY SEX, 1972-2007

FIGURE 8.2 BASELINE AND REDUCED-DISABILITY SCENARIOS IN APPSIM

FIGURE 8.3 LEVELS OF DISABILITIES AMONG 45-64 YEAR OLDS BY SEX, 2051

TABLE 8.1 LABOUR FORCE PARTICIPATION UNDER BASELINE AND LOW-DISABILITY SCENARIOS, 2051

FIGURE 8.4 LABOUR FORCE STATUS BY SEX, 45-64 YEAR OLDS UNDER BASELINE AND DISABILITY SCENARIOS, 2051

FIGURE 8.5 LABOUR FORCE PARTICIPATION OF THE COHORT BORN 1987-1996 UNDER BASELINE AND LOWER DISABILITY SCENARIOS

TABLE 8.2 SIMULATED EFFECTS OF REDUCED DISABILITY AMONG 45-64 YEAR OLDS, 2051

TABLE 8.3 EFFECT OF LOWER DISABILITY ON MEAN AND MEDIAN SUPERANNUATION, 2051 (2006 DOLLARS)

FIGURE 8.6 DISTRIBUTION OF SUPERANNUATION IN 45-64 AGE GROUP, 2051

TABLE B.1 COEFFICIENTS FOR RETIREMENT EQUATION

TABLE B.2 COEFFICIENTS FOR LABOUR FORCE PARTICIPATION EQUATION - NON-STUDENTS

TABLE B.3 COEFFICIENTS FOR LABOUR FORCE PARTICIPATION EQUATION - FULL-TIME STUDENTS

TABLE B.4 COEFFICIENTS FOR SELF-EMPLOYMENT EQUATIONS

TABLE B.5 COEFFICIENTS FOR QUARTERLY TRANSITION EQUATIONS
Aims of this research

This research first aims to discuss current labour force behaviour in Australia. Its second aim is to project labour force participation patterns into the future. Finally, it seeks to measure the impact of improving labour force participation on mitigating the impacts of the ageing population.

To determine whether a future government policy is likely to reduce the future fiscal gap by increasing labour force participation, a model is needed that will:

- Show the distributive effect of change (i.e. the effect of the change on classes of individuals, rather than the total macroeconomic effect); and

- Estimate the effects of these changes in labour supply over time upon key economic and social indicators, so that the cumulative effect of individual labour supply changes on, for example, future superannuation accumulation, can be measured.

At present, there is no model capable of fulfilling these functions for Australia. The Melbourne Institute Tax and Transfer Simulator (MITTS) developed by the Melbourne Institute abstracts from the effects of time, showing the effects of labour supply changes after behavioural responses are simulated immediately, rather than looking at the cumulative impact over many years (Creedy, et al. 2003). Models developed by the Australian Treasury to estimate the impact of labour force participation changes include cell-based models and typical taxpayer models, but these do not model how the specific circumstances of an individual’s life course can affect the burden they impose in retirement (Treasury 2007).

Synopsis of thesis

Chapter 1 begins by introducing some of the issues involved in modelling labour supply and outlines the reasons for why a new method of modelling the labour force in Australia is needed. Chapter 2 of thesis begins by summarising past, current and projected labour force participation patterns in Australia, reviews the literature on
factors that affect labour force participation in Australia, and compares these patterns to other countries. Chapter 3 reviews the literature on dynamic microsimulation modelling and summarises the features of a number of international models. It then gives a broad overview of APPSIM, a new dynamic microsimulation model under development at the National Centre for Social and Economic Modelling at the University of Canberra.

Chapter 4 explains in detail the modelling process used in building the labour force module in APPSIM and justifies the methodology used in its development. Chapter 5 discusses the validation of the labour force module, comparing model outputs to external cross-sectional and longitudinal benchmarks.

Chapters 6, 7 and 8 describe applications of the labour force module within APPSIM, demonstrating how APPSIM can be used to simulate how three different policy or social changes affect labour force participation and, in turn, how these affect issues relating to the ageing of the population, such as superannuation accumulation and retirement self-sufficiency. Chapter 9 summarises and concludes.

PART I: LABOUR SUPPLY IN AUSTRALIA

Chapter 1. Introduction

Labour lies at the core of every socioeconomic system. In the most primitive societies labour is used to source or create means of survival and improvement of life; in developed societies people sell their labour for a wage, which is used to buy immediate needs and wants, or saved to satisfy future needs and wants. In addition to this, it can provide purpose to life and an important means of social interaction. However, for various reasons, many people choose not to participate in the labour force. As in other industrialised countries, this may create difficulties in the future for Australia as the population ages.