Multivariate Features for Multi-class Brain Computer Interface Systems

A thesis submitted for the degree of PhD in Information Sciences and Engineering of the University of Canberra

Tuan Than Anh Hoang

May 18, 2014
Summary of Thesis

Brain-Computer Interface (BCI) is an emerging research field attracting a lot of research attention in an effort to build up a new way for communicating between computers and humans using brain signals. However, the performance of multi-class BCI systems is still not high enough. This research targets the feature extraction phase for Multi-Class BCI systems based on motor imagery. By analyzing the properties of covariance matrices and the nature of brain signals through experiments, the research proposes two new methods of feature extraction in BCI systems. The first method is called Approximation-based Common Principal Components (ACPC) analysis. This method aims at finding a common subspace from original subspaces which contain information of classes. Compared with the current state-of-the-art methods based on Common Spatial Patterns (CSP), this method directly deals with multi-class problems instead of converting multi-class problems into many 2-class problems. The second method is based on Aggregate Models. Its main idea comes from a highly challenging problem of large inter-subject and inter-session variability in BCI experiments. Exploiting these characteristics, this method can be used not only in Subject-Dependent Multi-Class BCI systems but also in Subject-Independent Multi-Class BCI ones. A combination of the proposed methods leads to a new method called Segmented Spatial Filters (SSF). The SSF method can not only improve spatial resolution of brain signals but also efficiently deal with inter-subject and inter-session variability in multi-class BCI systems.

Experiments were conducted on the Dataset 2a of the BCI Competition IV which is a well known dataset for multi-class BCI systems. Experimental results show that the proposed ACPC and Aggregate Model methods are superior to current state-of-the-art feature extraction methods that are based on CSP. The later model can also be applied in Subject-Independent Multi-Class BCI systems in a natural way with better accuracy compared with other related methods.
Contributions of Thesis

Contributions of the thesis has three folds. The first contribution is a new method called Approximation-based Common Principal Components (ACPC) analysis. This method can directly deal with multi-class BCI problems instead of converting a multi-class problem into many 2-class problems. The experiments of this method on a standard BCI dataset showed that it can achieve better classification accuracy than the 2-class-based methods.

The second contribution is a new method based on Aggregate Models. This method exploits the problem of large inter-subject and inter-session variability in BCI experiments. The conducted experiments showed that Aggregate Models can be used not only in Subject-Dependent Multi-Class BCI systems but also in Subject-Independent Multi-Class BCI systems. A successful application of Subject-Independent Multi-Class BCI systems can reduce learning time of new and inexperienced users of BCI systems.

The last contribution is based on a combination of the two proposed methods. It is named Segmented Spatial Filters (SSF). The SSF method can not only improve spatial resolution of brain signals but also efficiently deal with inter-subject and inter-session variability in multi-class BCI systems.
Acknowledgements

First and foremost, I would like to thank my supervisor A/Prof. Dat Tran. He has enormously supported my study at the University of Canberra. I appreciate all his contributions of time, ideas, advice, and funding supports to make my Ph.D. experience productive and stimulating. I would also like to thank my co-supervisors, Prof. Xu Huang and Prof. Dharmendra Sharma for their time, support and ideas on my research.

In regard to the fNIRS experiments, I would love to thank Prof. Vo Van Toi and Dr. Truong Quang Dang Khoa at Laboratory of Biomedical Engineering Department of International University, Viet Nam. Without their help, I could not successfully conduct the experiments.

I gratefully acknowledge the generous funding support sources that allow me to pursue this Ph.D. research. I was funded by the International Postgraduate Research Scholarships scheme which is co-sponsored by the Australian government and the University of Canberra, and by the W J Weeden Top Up Scholarship.

My time at the University of Canberra was made enjoyable due to many friends whom I met and worked with here. My sincere thanks is to A/Prof Girija Chetty for her kind invitation for being her assistant lecture. I would also love to thank the staff members, especially to Serena Chong, Kylie Reece, and Jason Weber for their quick and helpful response in administration work. Thanks to the research students of the Faculty of EsTEM for their useful discussions and seminars. A very warm thank to Mr. Hanh Huynh for his advices, encouragement and coffee. It is my pleasure to meet you here, my uncle. A grateful thank to my brothers and friends Trung Le, Amanda Jones, Phuoc Nguyen, and Dat Huynh.

I would like to express my appreciation to Beth Barber from the Faculty of Arts and Design, University of Canberra for her excellent editing. Her editing skills helped
me see the blind spots of the thesis and suggested better options for expressing my ideas.

Lastly, I would like to thank my family for all their love and support. To my parents who raised me up with their endless love, support and encouragement. To my brothers and sister who always support me in all my pursuits. And most of all to my loving and supportive wife Hannah and my little boy Khoa whose happiness has always been the biggest motivation in my life.
Contents

Summary of Thesis iii

Contributions of Thesis v

Acknowledgements ix

Abbreviation xxiii

List of Symbols xxvii

1 Introduction 1

1.1 Research context ... 1
 1.1.1 Data acquisition 2
 1.1.2 Pre-processing 2
 1.1.3 Feature extraction 3
 1.1.4 Classification 3
 1.1.5 Application interface 3
 1.1.6 Feedback ... 4

1.2 Brief introduction to EEG-based BCI systems 4

1.3 Problem statement .. 8

1.4 Targets of the research and brief of methodology 9
 1.4.1 Targets of the research 9
 1.4.2 Brief of Methodology 10

1.5 The thesis outline 10
2 Literature Review

2.1 Brain-Computer Interface .. 13
 2.1.1 Data acquisition in BCI 14
 2.1.2 Types of control signal in BCI 16
 2.1.3 Pre-processing methods in BCI 18
 2.1.4 Classifiers in BCI .. 19
 2.1.5 Existing BCI Applications and Systems 21

2.2 Feature extraction in BCI systems 22
 2.2.1 Feature extraction in general BCI systems 22
 Single-channel feature extraction methods 22
 Multi-channel feature extraction methods 27
 Common Spatial Patterns 31
 2.2.2 Feature extraction in Multi-class BCI systems 39
 2.2.3 Feature extraction in subject-dependent and subject-independent BCI systems 42

2.3 Activation and delay issue in BCI experiments 43

2.4 Functional Near Infrared Spectroscopy 44

2.5 Aggregate model related methods 45
 2.5.1 Adaptive boosting method 45
 2.5.2 Decision tree learning 47

3 Multi-class Brain-Computer Interface Systems and Baseline Methods

3.1 Formulation of Brain-Computer Interface 49

3.2 Common Spatial Patterns (CSP) analysis in 2-class BCI systems 50
 3.2.1 Two-class CSP ... 51
 3.2.2 CSP-based feature extraction in BCI systems 51

3.3 CSP-based extensions for multi-class BCI systems 52
 3.3.1 One-versus-the-Rest CSP 52
 3.3.2 Pair-wise CSP .. 53
 3.3.3 Union-based Common Principal Components 53

3.4 Time Domain Parameters 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>Relationship between Time Domain Parameters and other spectral power based features</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>Common Principal Component Analysis for Multi-Class Brain-Computer Interface Systems</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Jacobian-based ACPC</td>
<td>58</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Jacobian-based algorithm for finding Common Principal Components</td>
<td>58</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Ranking Common Principal Components and the relationship between Common Principal Components and 2-class Common Spatial Patterns</td>
<td>60</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Feature extraction based on Jacobian-based Common Principal Components</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>2PCA Approximation-based Common Principal Components</td>
<td>63</td>
</tr>
<tr>
<td>4.2.1</td>
<td>2PCA Approximation-based Common Principal Components</td>
<td>63</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Feature extraction based on 2PCA Approximation-based Common Principal Component analysis</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>Experiments with Approximation-based Common Principal Component Analysis</td>
<td>69</td>
</tr>
<tr>
<td>5.1</td>
<td>Dataset used in experiments</td>
<td>69</td>
</tr>
<tr>
<td>5.2</td>
<td>Experiment methods and validations</td>
<td>72</td>
</tr>
<tr>
<td>5.3</td>
<td>Experimental results</td>
<td>73</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Comparison with CSP_{1vsN} and CSP_{pairs} methods</td>
<td>74</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Comparison with Time Domain Parameters method</td>
<td>75</td>
</tr>
<tr>
<td>5.4</td>
<td>Discussion</td>
<td>78</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Visualization of Approximation-based Common Principal Components</td>
<td>78</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Effect of the number of selected common principal components on classification accuracy of $2PCA_{ACPC}$</td>
<td>79</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Effect of the number of selected common principal components on classification accuracy of $Jacobi_{ACPC}$</td>
<td>82</td>
</tr>
</tbody>
</table>
CONTENTS

Publications 137

Bibliography 139
List of Figures

1.1 A typical BCI scheme. ... 1
1.2 Conventional 10-20 EEG electrode positions for 21 electrodes 5
2.1 A simple brain structure (from www.wikipedia.org). 17
5.1 Timing scheme used in dataset 2a of the BCI Competition IV 70
5.2 The electrode positions used in dataset 2a of the BCI Competition IV 71
5.3 Comparison between CSP_{1vsN} and CSP_{pairs} methods. 75
5.4 Ranking of $ACPC$ and CSP methods based on classification accuracy average over all nine subjects. 76
5.5 Comparison between $Mobility$ and $Complexity$ features. 77
5.6 Ranking of $ACPC$ methods and TDP features based on classification accuracy average over all nine subjects. 77
5.7 Visualization of three sample common principal components 78
5.8 The effect of the number of selected components of $2PCA_{ACPC}$ 80
5.9 The effect of the number of selected components of $2PCA_{ACPC}$ compared with CSP-based methods 81
5.10 The effect of the number of selected components of $2PCA_{ACPC}$ compared with TDP .. 81
5.11 The effect of the number of selected components of $Jacobi_{ACPC}$ 82
5.12 The effect of the number of selected components of $Jacobi_{ACPC}$ compared with CSP-based methods 83
5.13 The effect of the number of selected components of $Jacobi_{ACPC}$ compared with TDP .. 84
5.14 Comparison of classification accuracy between ACPC and methods of the participants on average

6.1 Protocols were used in fNIRS experiments

6.2 Optode positions used in the fNIRS experiments

6.3 A general aggregate model at score level for BCI systems

6.4 A general aggregate model at feature level for BCI systems

7.1 Comparison between CSP_1 vs N and its aggregate models

7.2 Comparison between CSP_pairs and its aggregate models

7.3 Comparison between 2PCA_ACPC and its aggregate models

7.4 Comparison between CSP_1 vs N and its framed version

7.5 Comparison between CSP_pairs and its framed version

7.6 Comparison between 2PCA_ACPC and its framed version

7.7 Comparison between NAM and SAM and FAM in SI-MBCI

7.8 Multiple comparison test results of 4 models using CSP_1 vs N methods for 4-class SI-BCI systems

7.9 Multiple comparison test results of 4 models using CSP_pairs methods for 4-class SI-BCI systems

7.10 Multiple comparison test results of 4 models using 2PCA_ACPC methods for 4-class SI-BCI systems

7.11 Multiple comparison test results of 4 models using CSP_1 vs N methods for SI-2BCI systems

7.12 Multiple comparison test results of 4 models using CSP_pairs methods for SI-2BCI systems

7.13 Comparison of SD-MBCI and SI-MBCI using SAM_CSP_1 vs N

7.14 Comparison of SD-MBCI and SI-MBCI using SAM_CSP_pairs

7.15 Comparison of SD-MBCI and SI-MBCI using SAM_2PCA_ACPC

7.16 Comparison between NAM and SAM using Mobility as feature in a SD-MBCI system

7.17 Comparison between NAM and SAM using Complexity as feature in a SD-MBCI system

7.18 Classification results of DFAM_CSP_1 vs N in SD-MBCI
LIST OF FIGURES

7.19 Classification results of $DFAM_CSP_pairs$ in SD-MBCI systems . . 123
7.20 Classification results of $DFAM_2PCA_ACPC$ in SD-MBCI systems 123
7.21 Comparison between FAM_CSP_1vsN and $DFAM_CSP_1vsN$ in
 SD-MBCI systems . 124
7.22 Comparison between FAM_CSP_pairs and $DFAM_CSP_pairs$ in
 SD-MBCI systems . 125
7.23 Comparison between FAM_2PCA_ACPC and $DFAM_2PCA_ACPC$
 in SD-MBCI systems . 126
List of Tables

2.1 Summary of EEG rhythms. ... 17
2.2 Summary of control signals. ... 18
2.3 Summary of single channel feature extraction methods 28

5.1 The classification results of participants in the BCI Competition IV on Dataset 2a ... 72
5.2 Comparison of ACPC with CSP – based methods 74
5.3 Comparison of ACPC with Time Domain Parameters feature 76
5.4 Comparison of classification accuracy between ACPC and methods of the participants ... 85

7.1 The classification results of the non-aggregate methods 103
7.2 The classification results of the SAM over NAM 105
7.3 The best classification accuracy of aggregate models 112
7.4 The classification results of SAM and NAM in a 2BCI system 113
7.5 Classification results of SD_MBCI systems using SAM_CSP_1vsN 117
7.6 Classification results of SD_MBCI systems using SAM_CSP_pairs 117
7.7 Classification results of SD_MBCI systems using SAM_2PCA_ACPC ... 117
7.8 Improvement of SAM_Mobility and SAM_Complexity over their NAM 121
7.9 Average results of DFAM models over nine subjects and their corre- sponding FAM models ... 125
Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2BCI</td>
<td>2-class Brain-Computer Interface</td>
</tr>
<tr>
<td>2PCA_CPC</td>
<td>PCA-based Approximation-based Common Principal Components</td>
</tr>
<tr>
<td>ACPC</td>
<td>Approximation-based Common Principal Components</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AR</td>
<td>Autoregressive</td>
</tr>
<tr>
<td>AAR</td>
<td>Adaptive Autoregressive</td>
</tr>
<tr>
<td>BCI</td>
<td>Brain-Computer Interface</td>
</tr>
<tr>
<td>C4.5</td>
<td>a decision tree learning algorithm</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CPC</td>
<td>Common Principal Components</td>
</tr>
<tr>
<td>CSP</td>
<td>Common Spatial Patterns</td>
</tr>
<tr>
<td>CSP_1vsN</td>
<td>CSP-based method using one-versus-the-rest strategy in MBCI</td>
</tr>
<tr>
<td>CSP_pairs</td>
<td>CSP-based method using pair-wise strategy in MBCI</td>
</tr>
<tr>
<td>CSSP</td>
<td>common spatio-spectral patterns</td>
</tr>
<tr>
<td>deoxyHb</td>
<td>deoxyhaemoglobin</td>
</tr>
<tr>
<td>DFAM</td>
<td>dynamic segmentation aggregate model at feature level</td>
</tr>
<tr>
<td>ECoG</td>
<td>electrocardiography</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalography</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyography</td>
</tr>
<tr>
<td>EOG</td>
<td>electrooculography</td>
</tr>
<tr>
<td>FAM</td>
<td>aggregate model at feature level</td>
</tr>
<tr>
<td>FAM_CSP_1vsN</td>
<td>aggregate model at feature level with CSP_1vnN</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FAM_CSP_pairs</td>
<td>aggregate model at feature level with CSP_pairs</td>
</tr>
<tr>
<td>FAM_2PCA_ACPC</td>
<td>aggregate model at feature level with 2PCA_ACPC</td>
</tr>
<tr>
<td>FBCSP</td>
<td>Filter Bank Common Spatial Patterns</td>
</tr>
<tr>
<td>fMRI</td>
<td>functional magnetic resonance imaging</td>
</tr>
<tr>
<td>fNIRS</td>
<td>functional near infrared spectroscopy</td>
</tr>
<tr>
<td>HMM</td>
<td>Hidden Markov Model</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent Components Analysis</td>
</tr>
<tr>
<td>ID3</td>
<td>Iterative Dichotomiser 3</td>
</tr>
<tr>
<td>INR</td>
<td>Introcortical neural recording</td>
</tr>
<tr>
<td>Jacobi_ACPC</td>
<td>Jacobian-based Approximation-based Common Principal Components</td>
</tr>
<tr>
<td>JAD</td>
<td>joint approximate diagonalization</td>
</tr>
<tr>
<td>kNN</td>
<td>k-nearest neighbours</td>
</tr>
<tr>
<td>LDA</td>
<td>Linear Discriminant Analysis</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mW</td>
<td>milliwatt</td>
</tr>
<tr>
<td>MBCI</td>
<td>multi-class Brain-Computer Interface</td>
</tr>
<tr>
<td>MVAR</td>
<td>Multivariate Autoregressive</td>
</tr>
<tr>
<td>MEG</td>
<td>magnetoencephalography</td>
</tr>
<tr>
<td>NAM</td>
<td>non-aggregate model</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>oxyHb</td>
<td>oxyhaemoglobin</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PLV</td>
<td>Phase Locking Value</td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectral Density</td>
</tr>
<tr>
<td>SAM</td>
<td>aggregate model at score level</td>
</tr>
<tr>
<td>SAM_CSP_1vsN</td>
<td>aggregate model at score level with CSP_1vsN</td>
</tr>
<tr>
<td>SAM_CSP_pairs</td>
<td>aggregate model at score level with CSP_pairs</td>
</tr>
<tr>
<td>SAM_2PCA_ACPC</td>
<td>aggregate model at score level with 2PCA_ACPC</td>
</tr>
<tr>
<td>SBCSP</td>
<td>Sub-bank Common Spatial Patterns</td>
</tr>
<tr>
<td>SD-2BCI</td>
<td>subject-dependent 2-class Brain-Computer Interface</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>SD-MBCI</td>
<td>subject-dependent multi-class Brain-Computer Interface</td>
</tr>
<tr>
<td>SD-BCI</td>
<td>subject-dependent Brain-Computer Interface</td>
</tr>
<tr>
<td>SI-2BCI</td>
<td>subject-independent 2-class Brain-Computer Interface</td>
</tr>
<tr>
<td>SI-BCI</td>
<td>subject-independent Brain-Computer Interface</td>
</tr>
<tr>
<td>SI-MBCI</td>
<td>subject-independent multi-class Brain-Computer Interface</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>SSF</td>
<td>segmented spatial filters</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>UCPC</td>
<td>Union-based Common Principal Components</td>
</tr>
</tbody>
</table>
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_x</td>
<td>the Fourier transform of the signal x</td>
</tr>
<tr>
<td>F_x^*</td>
<td>complex conjunction of the Fourier transform of the signal x</td>
</tr>
<tr>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>c_{xy}</td>
<td>cross-correlation function of signal x and signal y according to time lag τ</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>mean of signal x</td>
</tr>
<tr>
<td>δ_x</td>
<td>variance of signal x</td>
</tr>
<tr>
<td>$C_{xy}(\omega)$</td>
<td>cross-spectrum of signal x and y</td>
</tr>
<tr>
<td>$R_i(x)$</td>
<td>average distance from data point i^{th} to other data points in an embedding space constructed from signal x</td>
</tr>
<tr>
<td>$R^p_i(x)$</td>
<td>average distance from data point i^{th} to its p nearest data points in an embedding space constructed from signal x</td>
</tr>
<tr>
<td>$R^p_i(x</td>
<td>y)$</td>
</tr>
<tr>
<td>$\Gamma_{xy}(\omega)$</td>
<td>coherence function of signal x and y</td>
</tr>
<tr>
<td>$S^p(x</td>
<td>y)$</td>
</tr>
<tr>
<td>$H^p(x</td>
<td>y)$</td>
</tr>
<tr>
<td>$N^p(x</td>
<td>y)$</td>
</tr>
<tr>
<td>$MI(x,y)$</td>
<td>mutual information of signal x and y</td>
</tr>
<tr>
<td>$Entropy(Se)$</td>
<td>entropy of a set Se of samples</td>
</tr>
<tr>
<td>$Entropy(x)$</td>
<td>entropy of signal x</td>
</tr>
<tr>
<td>Entropy(x, y)</td>
<td>joint entropy of signal x and y</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>K</td>
<td>number of channels</td>
</tr>
<tr>
<td>Time</td>
<td>number of sampled time points in a trial</td>
</tr>
<tr>
<td>t</td>
<td>sample index or time index</td>
</tr>
<tr>
<td>Sub</td>
<td>set of subjects</td>
</tr>
<tr>
<td>i</td>
<td>index of a set</td>
</tr>
<tr>
<td>s</td>
<td>a subject participating in a BCI experiment</td>
</tr>
<tr>
<td>X</td>
<td>a set of trials in a dataset</td>
</tr>
<tr>
<td>X_i</td>
<td>the i-th trial of dataset X</td>
</tr>
<tr>
<td>X^CSP_i</td>
<td>projection of the i-th trial in CSP space</td>
</tr>
<tr>
<td>X^CPC_i</td>
<td>projection of the i-th trial in CPC space</td>
</tr>
<tr>
<td>Lab(X_i)</td>
<td>The known class label of trial X_i</td>
</tr>
<tr>
<td>z</td>
<td>feature vector</td>
</tr>
<tr>
<td>z_k</td>
<td>k-th component of feature vector</td>
</tr>
<tr>
<td>κ</td>
<td>Kappa coefficient</td>
</tr>
<tr>
<td>Col(x, y)</td>
<td>value at the point (x, y) in a grid</td>
</tr>
<tr>
<td>A_{j,λ}</td>
<td>optical density of the j-th channel at wavelength λ</td>
</tr>
<tr>
<td>Δoxy_{j}</td>
<td>relative concentration changes of oxy-generated haemoglobin of the j-th channel</td>
</tr>
<tr>
<td>Δdeoxy_{j}</td>
<td>relative concentration changes of deoxy-generated haemoglobin of the j-th channel</td>
</tr>
<tr>
<td>w</td>
<td>window size or frame size</td>
</tr>
<tr>
<td>s</td>
<td>window step or frame rate</td>
</tr>
<tr>
<td>arg_c(f)</td>
<td>argument function which returns the argument c satisfying function f</td>
</tr>
<tr>
<td>argmax_c(f)</td>
<td>maximize function f by tuning parameter c</td>
</tr>
<tr>
<td>argmin_c(f)</td>
<td>minimize function f by tuning parameter c</td>
</tr>
<tr>
<td>L(x)</td>
<td>aggregate function of signal x</td>
</tr>
<tr>
<td>c</td>
<td>a class label</td>
</tr>
<tr>
<td>Fr(x)</td>
<td>set of frames extracted from the signal x</td>
</tr>
<tr>
<td>fr_k</td>
<td>the k-th frame of some frame set</td>
</tr>
<tr>
<td>SVM</td>
<td>trained classifier using Support Vector Machines method</td>
</tr>
</tbody>
</table>
Th threshold to determine predicted class in aggregate model
Cl general trained classifier
$sign(.)$ sign function which returns sign of its argument
D_t weight set or a distribution over a training dataset in boosting method
h_t weak classifier at time point t
ϵ_t error of weak classifier at time point t over the training dataset
α_t weighted coefficient used to combine weak classifiers to form the final classifier
$H(x)$ the final classifier in boosting method
A_j j–th component of feature space or j–th attribute
Chapter 1

Introduction

1.1 Research context

Brain-Computer Interface (BCI) is an emerging research field attracting a great deal of effort from researchers around the world. Its aim is to build a new communication channel that allows a person to send commands to an electronic device using his/her brain activities [Wolpaw et al., 2002]. BCI systems have been provided to severely handicapped people and patients with brain diseases such as epilepsy, dementia and sleeping disorders [Lotte, 2008] for them to interact with other electronic devices.

When viewed as of a pattern recognition system, a typical BCI scheme includes data acquisition, data preprocessing, feature extraction, classification, application interface, and feedback phases. This scheme is illustrated as in Fig. 1.1.

![Figure 1.1: A typical BCI scheme.](image-url)
1.1 Research context

1.1.1 Data acquisition

The main purpose of this step is to acquire signals from brain activities using various types of sensors including electroencephalography (EEG), magnetoencephalography (MEG), electrocorticography (ECoG), electrical signal acquisition in single neurons (intracortical neural recording - INR), functional magnetic resonance imaging (fMRI), and functional near infrared spectroscopy (fNIRS). These brain data acquisition methods are evaluated by a few different criteria. Typical criteria include manner of deploying sensors, type of acquired signal, temporal resolution which is the ability to detect changes within a certain of time interval [Graimann et al., 2010], spatial resolution which is the ability to detect source of changes in brain, and portability which is the ability to use acquisition device across different environments. Table 1.1 shows a summary comparison of these data acquisition methods based on the above criteria. The thesis mainly focuses on EEG signals.

Table 1.1: Summary of brain data acquisition methods [Gurkok and Nijholt, 2012][Nicolas-Alonso and Gomez-Gil, 2012]

<table>
<thead>
<tr>
<th>Method</th>
<th>Activity</th>
<th>Temporal resolution</th>
<th>Spatial resolution</th>
<th>Deployment</th>
<th>Portability</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG</td>
<td>Electrical</td>
<td>0.05 s</td>
<td>10 mm</td>
<td>Non-invasive</td>
<td>Portable</td>
</tr>
<tr>
<td>MEG</td>
<td>Magnetic</td>
<td>0.05 s</td>
<td>5 mm</td>
<td>Non-invasive</td>
<td>Non-portable</td>
</tr>
<tr>
<td>ECoG</td>
<td>Electrical</td>
<td>0.003 s</td>
<td>1 mm</td>
<td>Invasive</td>
<td>Portable</td>
</tr>
<tr>
<td>INR</td>
<td>Electrical</td>
<td>0.003 s</td>
<td>0.05-0.1 mm</td>
<td>Invasive</td>
<td>Portable</td>
</tr>
<tr>
<td>fMRI</td>
<td>Metabolic</td>
<td>1 s</td>
<td>1 mm</td>
<td>Non-invasive</td>
<td>Non-portable</td>
</tr>
<tr>
<td>fNIRS</td>
<td>Metabolic</td>
<td>1 s</td>
<td>5 mm</td>
<td>Non-invasive</td>
<td>Portable</td>
</tr>
</tbody>
</table>

1.1.2 Pre-processing

This step is to clean and de-noise data acquired from the previous step in order to enhance relevant information [Bashashati et al., 2007]. Besides the main event the experiments would like to acquire, there are many types of artifacts from both subjects participating in the experiment and the system. The system artifacts are a
50/60 Hz power supply interference, electrical noise from electronic components, and cable defects. The subject artifacts are body-movement related to electrooculography (EOG), electromyography (EMG), electrocardiography (ECG), and sweating. These artifacts make the recorded EEG signal to have a low signal-to-noise ratio (SNR).

1.1.3 Feature extraction

Feature extraction is a crucial step in the BCI scheme. Its task is to represent the whole signal by using some shorter and more meaningful measures called features [Bashashati et al., 2007][Lotte et al., 2007]. Until now, although there has been a lot of effort from neuroscientists seeking to discover brain and neural operations inside it, the overall knowledge of human-beings about the brain is still very limited. This shortcoming makes brain signal more difficult than other signals such as voice signal in feature extraction.

1.1.4 Classification

The task of the classification step is to assign an object represented by a feature vector to a class. In a BCI system, classes are usually brain states or, subject real or imaginary actions. One of the most important challenges of BCI systems is that, due to difficulties in setting up experiments, sample data used for the training phase is quite small compared with the feature vector size. Thus, trained classifiers are easy to become overfit. Researchers have tried to apply a number of classifiers [Lotte et al., 2007], both linear and non-linear. Some well known and successful methods are Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), Support Vector Machine (SVM), Hidden Markov Model (HMM), k-nearest neighbours (kNN) and Artificial Neural Network (ANN). Among them, LDA and SVM are the two best classifiers [Lotte et al., 2007].

1.1.5 Application interface

After correctly identifying brain state or brain activity, the results of the classifier are converted into some command sets which will be sent to control devices. This step depends on the specific electronic device and application.
1.1.6 Feedback

Feedback is the last step helping users control their brain activity and in this way this improve the BCI system’s performance. Usually, it provides the user with feedback about brain states. In most BCI systems, the feedback step is used in the training phase or offline phase [Lotte, 2008].

1.2 Brief introduction to EEG-based BCI systems

A BCI system can be classified as an invasive or non-invasive BCI according to the way the brain activity is being measured within this BCI. If the sensors used for measurement are placed within the brain, i.e. under the skull, the BCI is said to be invasive. By comparison, if the measurement sensors are placed outside the head, on the scalp for instance, the BCI is said to be non-invasive [Lotte, 2008]. The non-invasive BCI systems avoid health risks and associated ethical concerns. In the case of normal people, it is easy to see that invasive methods are not a good choice. Furthermore, non-portable methods limit flexibility of these systems [Cichocki et al., 2008][Moore, 2003][Wolpaw et al., 2006]. From Table 1.1 it can be seen that EEG and fNIRS are the best candidates for an acceptable BCI system. Comparing these two methods, fNIRS is less portable and more expensive than EEG, and it provides a much lower temporal resolution which is very important in real time BCI systems. Consequently, EEG is the most popular brain data acquisition method used in BCI systems. Following this trend, the thesis focus is on EEG-based BCI systems.

Modern EEG recording systems consist of a number of small and soft electrodes, a set of differential amplifiers (one for each channel) with filters, and pen-type registers. When using with a large number of electrodes, electrode caps are the best choice. The International Federation of Societies for Electroencephalography and Clinical Neurophysiology has recommended a standard 10-20 system (Fig. 1.2) for 21 electrodes. In this setting, the standard considers some constant distance and uses 10% or 20% of that one as the electrode interval. Each electrode is named based on its position in relation to brain region.

Depending on the human state and/or age, an EEG signal contains different frequencies and amplitudes. There are five major brain waves which differentiate from
1.2 Brief introduction to EEG-based BCI systems

Figure 1.2: Conventional 10-20 EEG electrode positions for 21 electrodes [Sanei and Chambers, 2007].
1.2 Brief introduction to EEG-based BCI systems

each other by their frequency spectrum [Nicolas-Alonso and Gomez-Gil, 2012][Gurkok and Nijholt, 2012][Sanei and Chambers, 2007]. They are called alpha (\(\alpha \)), theta (\(\theta \)), beta (\(\beta \)), delta (\(\delta \)), and gamma (\(\gamma \)). Alpha waves are usually detected over the occipital region of the brain: their frequencies range from 8Hz to 13Hz. These waves indicate a relaxed state when there is no attention or concentration. Beta waves are mainly found over the frontal and central regions. Their frequencies range from 14Hz to 30Hz, although in some of the literature there is no specified upper bound of a beta wave’s frequency. When people are in active thinking, active attention, focusing on something, or solving problems, beta waves are generated. Beta waves are also found when people are in a panic state. Delta waves lie within the range of 0.5 - 4Hz. They are primarily associated with deep sleep or the waking up state of the human brain. Theta waves have the range of 4 - 8Hz. They are associated with unconscious material, creative inspiration, and deep meditation. The theta wave plays an important role in infancy and childhood. Gamma waves, sometimes called fast beta waves, have frequencies greater than 30Hz. These rhythms are used to confirm some brain diseases. They are also used for locating some movement such as tongue, left and right index fingers, and right toes.

A cognitive task will trigger a lot of simultaneous phenomena in the brain. Due to human’s limited understanding of brain operation, most of these phenomena are incomprehensive and cannot be traced to their origins. However, a few have been decoded and therefore can be used in interpreting brain activity, which leads to their use in BCI systems. In BCI systems, these signals are called control signals. There are two main types of control signals: evoked signals and spontaneous signals [Lotte, 2008]. Evoked signals are generated unconsciously when a subject acknowledges a specific stimulus. They are also called evoked potentials. Their main advantage compared with spontaneous signals is that there is no need of a subject trained before interacting with a BCI system. Evoked signals also can achieve a higher information transfer rate than the spontaneous signals. Steady State Evoked Potentials (SSEP) and P300 fall into this type of control signal. Spontaneous signals are intentionally generated by the subject without any external stimulus due to an internal cognitive process. To use these control signals in a BCI system needs quite an amount of training time. Moreover, they achieve a lower information transfer rate than the first
1.2 Brief introduction to EEG-based BCI systems

type of control signal. However, they can provide a natural way for normal people to communicate with BCI systems. Motor and sensorimotor rhythms, and slow cortical potentials fall into this type of control signals. They are much less annoying than evoked signals which are based on infrequent stimulus. Here, in this thesis the focus is on motor-imagery control signal in EEG-based BCI systems. From now on, the thesis uses the term BCI systems when referring to motor imagery EEG-based BCI systems. Although there are some cases in which the thesis uses motor imagery-based BCI systems as an alternative.

More formally, let $X = \{x\}$ be a set of brain signals, $Sub = \{s\}$ be a set of subjects who generate X, and $Lab = \{l\}$ be a set of class brain imagery or non-imagery actions, the aim of BCI problems is to estimate the probability of class label l happening given the signal x, denoting $P(l|x)$. The probability distribution P can be used for constructing classifiers later.

If the cardinal of the set Lab equals 2, we have 2-class BCI (2BCI) systems. Otherwise, if the cardinal of the set Lab is greater than 2, we have multi-class BCI (MBCI) systems.

If we estimate $P(Lab|X)$ independent of subjects in Sub, we have subject-independent BCI (SI-BCI) systems. Otherwise, if $P(Lab|X)$ is individually estimated for each subject in Sub, we have subject-dependent BCI (SD-BCI) systems.

Combining these, in total we can classify BCI systems into four categories: subject-dependent 2-class BCI (SD-2BCI) systems, subject-dependent multi-class BCI (SD-MBCI) systems, subject-independent 2-class BCI (SI-2BCI) systems, and subject-independent multi-class BCI (SI-MBCI) systems.

According to the BCI scheme described above, there are three main ways to improve performance of a BCI system: enhancing quality of recording data at the data acquisition step, analysing and proposing new features and capturing more relevant information from brain activity at the feature extraction step, and choosing appropriate and improving classifiers at the classification step. Using the first way requires improving sensor technology which is not the purpose of this research. For the third way, numerous classifiers [Lotte et al., 2007] have been analyzed but the performance of those BCI systems is still far from what is acceptable. On a standard dataset, the data set IV of the BCI Competition 2003, Lotte et al. [Lotte et al., 2007] tried with
different classifiers accompanying with various features. The classification accuracy ranges from 83% to 90%. Moreover, because the size of training data is quite small [Lotte, 2008], researchers have few options but to choose classifiers which deal well with small sample datasets. These arguments lead the research to choose feature extraction as the main topic of this research. Due to the fact that features containing information extracted from the original signal, feature extraction methods are believed to help researchers in explaining signals. Therefore, on the way to proposing new features, the research can gain more knowledge about how the brain is organized and operates.

1.3 Problem statement

The thesis is motivated by the aims to address four gaps in current research on BCI. The first research gap is in synchronization measures. Quian et al. [Quiroga et al., 2002] listed three reasons for considering synchronization measures. Firstly, they allow assessment of the level of functional connectivity between two brain areas. Secondly, they have clinical relevance to identify different brain states and pathological activities. Thirdly, they may show level of communication between different brain areas. Recent studies [Varela et al., 2001], [Fiebach et al., 2005] revealed the great importance of the coupling of brain regions referring to "long-range synchronization" of activities between distant brain regions. Although synchronization measures have strong support from the results of clinical experiments, applying them in the BCI research area is still at the beginning phase with little research undertaken to date [Anderson et al., 1998], [Quiroga et al., 2002], [Nolte et al., 2004], [Schlögl and Supp, 2006], [Brunner et al., 2010]. One of the successful synchronization measures is Common Spatial Patterns [Blankertz et al., 2008b] which explores the properties of covariance matrices. The second research gap is in multi-class BCI systems. For problems which have less than 4 mental tasks, the BCI systems' accuracies can be up to 90%, but for the others, their accuracies quickly decrease [Obermaier et al., 2001a]. A third research gap for multi-class BCI systems is that most of the current approaches [Dornhege et al., 2004][Grosse-Wentrup and Buss, 2008][Wei et al., 2010][Ang et al., 2012] convert the multi-class classification problem to a set of 2-
class classification problems. They do not directly target multi-class BCI systems. The final gap in current research on BCI that is addressed in subject-independent BCI systems. Due to the large inter-subject and inter-session variability, most of the recent works focus on subject-dependent BCI systems. The large variability has its root in the activation and delay issue in conducting BCI systems. It is a well-known issue [Macaluso et al., 2007], [Toni et al., 1999]: the times of stimulation and response which are expected to be the same or nearly the same, are actually different. As a result, there are only a few works [Krauledat et al., 2008], [Fazli et al., 2009], [Lotte et al., 2009] on SI-BCI systems up to now.

In summary, the research topic is about finding new methods for extracting synchronization measures in multi-class BCI systems based on motor imagery in cares of both subject-dependent and subject-independent systems.

1.4 Targets of the research and brief of methodology

1.4.1 Targets of the research

As stated in the previous sections, the research focuses on finding new methods for extracting features in motor imagery-based MBCI systems. This research limits the scope of the research to BCI systems which use EEG as a mean of acquiring input signals, although there is other technology that can be used for analyzing experiments such as fNIRS. With these limitations in research scope, the thesis addresses three research questions.

1. How can we build a feature extraction method based on synchronization measures that targets multi-class BCI systems directly instead of through a set of 2-class problems?

2. How can we build a feature extraction method that overcomes the issue of large inter-subject and inter-session variability in multi-class BCI systems?

3. What is the difference in performance between subject-dependent and subject-independent MBCI systems? What feature extraction methods can be used in
subject-independent MBCI systems for enhancing performance? What models can be used in both subject-dependent and subject-independent MBCI systems?

1.4.2 Brief of Methodology

As discussed so far, the study views BCI systems as pattern recognition problems which include four steps: data acquisition, data pre-processing, feature extraction and classification. Thus, the research can employ a large number of research methods published in the pattern recognition area. But also, there is the fact that CSP analysis based on covariance analysis is the state-of-the-art method for feature extraction in motor-imagery BCI systems. Thus, the research will focus on covariance matrices in analyzing synchronization measures. On the way to finding answers for the research questions, experiments were conducted on both EEG and fNIRS to analyze brain signals. To validate these methods, well-known public standard EEG datasets were used in the experiments. In this way, the time for conducting complicated experiments very carefully was reduces. Dataset 2a of the BCI Competition IV which is one of the most popular multi-subject multi-class benchmark datasets in BCI research was used as the main dataset for validation in the research.

1.5 The thesis outline

The thesis is organized as follows. Chapter 1 introduces the research context, the scope of the research, the problem statement and aims of the research. In Chapter 2, the thesis reviews the relevant literature in BCI systems generally, and, specifically their feature extraction methods. In Chapter 3, the problem of multi-class is formalized, the base-line methods which were later used to compare with the proposed methods are introduced. In Chapter 4, a new method was proposed for feature extraction called Approximation-based Common Principal Components (ACPC) which directly deals with multi-class BCI systems. Chapter 5 presents the experimental results of two implementations of the proposed ACPC method. It also contains a discussion related to the ACPC method. In Chapter 6, two general aggregate models are proposed to deal with inter-subject and inter-session variability in multi-class BCI systems. The thesis discusses in detail these models when combined with ACPC
as the feature extractor and prove that these methods can work well for both subject-dependent MBCI systems and subject-independent MBCI systems. The experimental results and related discussions are in Chapter 7. And finally, in Chapter 8, the conclusions are presented and possible directions for future research are proposed.
Chapter 2

Literature Review

In this chapter, relevant literature on BCI is reviewed. It covers details of the components of BCI, including data acquisition, types of control signal, pre-processing techniques, feature extraction and classifiers. For each component, there is a review and comparison made with existing methods in use. Then, choices for specific components in the research’s experiments are identified and explained. While reviewing all phases in BCI systems, the chapter pays most attention to the feature extraction phase due to it being the thesis topic. After reviewing the feature extraction methods, the reasons and necessary of conducting this research are explained.

2.1 Brain-Computer Interface

A Brain-Computer Interface (BCI) which is also often referred as Brain-Machine Interface is a communication system that enables humans to interact with other devices using their brain activity rather than their peripheral nerves and muscles [Wolpaw et al., 2002]. Due to this characteristic, BCI systems have a huge attraction from people who suffer from sever motor disabilities. Successful BCI applications not only improve these people’s lives but also reduce the cost of intensive care. Until recently BCI had very little attraction for researchers. There were only three groups in the world investigate BCI research twenty five years ago and about ten groups fifteen years ago[Wolpaw, 2007]. People believed that designing BCIs was too complex because of many factors including limited resolution, reliability of detectable information from
2.1 Brain-Computer Interface

the brain, the high variability of acquired signals, and the constraints of extremely expensive devices [Nicolas-Alonso and Gomez-Gil, 2012]. The situation is getting better. BCI research is now considered a young multidisciplinary field integrating researchers and knowledge from neuroscience, physiology, psychology, biomedical engineering and computer science [Nicolas-Alonso and Gomez-Gil, 2012]. Number of groups doing BCI research significantly increases over last 15 years. There are more than 100 groups doing BCI research in 2007 [Wolpaw, 2007]. Nevertheless, most BCI systems are under developed and in a laboratory stage only. Although there are some specialized BCI products now on the shelf that are oriented toward public users such as of Emotiv [Emotiv, 2013] or Neurosky [Neurosky, 2013] for example.

A typical BCI system operates as follows. Firstly, a user is asked to perform some brain activity. The activity is then acquired and quantified as a brain signal. Secondly, the brain signal is prepared and processed. Through this processing relevant information is extracted from the brain signal. Thirdly, the relevant information is used to interpret and obtain knowledge on the user’s mental state or intention. Finally, this knowledge is used to communicate with other devices. From viewpoint of a pattern recognition system, a general BCI system includes data acquisition, data preprocessing, feature extraction, classification, application interface, and feedback phases. This scheme is illustrated as in Fig. 1.1. The following subsections review in more detail these phases in BCI systems.

2.1.1 Data acquisition in BCI

Data acquisition technologies for measuring brain activity can be categorized into two main categories: those that use electrophysiological and those that use hemodynamic methods [Nicolas-Alonso and Gomez-Gil, 2012][Gurkok and Nijholt, 2012]. Electrophysiological methods rely on a well-known electro-chemical process inside the brain. Basically, neurons will generate ionic currents when exchanging information with others. By measuring these currents, researchers believe that they can know about the exchanged information or the brain activity. Methods that fall into this electrophysiological group include electroencephalography (EEG), electrocorticography (ECoG), magnetoencephalography (MEG), and electrical signal acquisition in single neurons (intracortical neural recording - INR). Hemodynamic methods are based on a pro-
cess in which the ratio of oxyhemoglobin to deoxyhemoglobin changes in active brain area. These changes are due to the blood releasing more glucose and oxygen in an active brain area than other inactive ones. This hemodynamic group includes methods such as functional magnetic resonance imaging (fMRI) and functional near infrared spectroscopy (fNIRS).

These brain data acquisition methods are evaluated using different criteria [Nicolas-Alonso and Gomez-Gil, 2012][Gurkok and Nijholt, 2012]. Typical criteria are the manner of deploying sensors, type of acquired signal, temporal resolution, spatial resolution, and portability. There are two manners of deploying sensors: invasive and non-invasive. While invasive methods require some level of brain surgery to place sensors inside the skull, non-invasive methods do not. Invasive methods are therefore considered extremely risky and only used for people with severe motor disabilities. Specifically, ECoG and electrical signal acquisition in single neurons are invasive methods. The others are non-invasive methods measure signal from the scalp. The types of acquired signal are electrophysiological and hemodynamic. Electrophysiological signals can be further divided into electrical and magnetic. Specifically, EEG, ECoG and INR measure electrical activity, and MEG measures magnetic activity. Hemodynamic or metabolic activity is measured by fMRI and fNIRS. Temporal resolution and spatial resolution refer to how precisely a method can measure in the temporal domain and the spatial domain, respectively. Invasive methods usually produce brain images with better temporal and spatial resolution. On the other hand, due to spatial mixing of generated activity from different cortical areas and the absorption of signals from brain tissues, bone and skin, non-invasive methods provide quite low spatial resolution. Among non-invasive methods, EEG and MEG provide the best temporal resolution, while fMRI provides the best spatial resolution. Portability represents how portable a data acquisition method is. EEG, ECoG and fNIRS are more portable than the others. A summary of these brain data acquisition methods is shown in Table 1.1.

When considering a BCI system for normal people, it is easy to see that invasive methods are not a good choice. Furthermore, non-portable methods will limit the flexibility of these systems. EEG and fNIRS are therefore the best candidates for BCI systems. Comparing these two methods, fNIRS is less portable and more expensive
than EEG, and provides a much lower temporal resolution which is very important in real time BCI systems. Consequently, EEG is the most popular brain data acquisition method used in BCI systems. Following this trend, the research focuses on EEG-based BCI systems.

The first reported attempt to measure human brain activity using EEG was that undertaken by Hans Berger in 1924 [Lotte, 2008]. It was also the first time people measured human brain activity altogether. In his work, Berger used electroencephalography (EEG) to measure the sum of potentials generated by thousands of neurons inside the brain through electrodes placed on the scalp. The acquired electrical signal using EEG is very weak so it needs to be strongly amplified before processing. Depending on the purpose and expert knowledge of BCI systems, designers of BCI determine the number of electrodes used in experiments. This number varies from 1 to 256 electrodes in reported BCI systems [Lotte, 2008]. To make it easy for setting and comparing experiments, electrode positions on the scalp are standardized. According to the 10-20 international system [Jasper, 1958][Sharbrough et al., 1991](Fig. 1.2), each position has coordinates and a name.

EEG signals are composed of different rhythms. These rhythms differ from each other by their spatial and spectral localization. They are also different in purpose of brain activity. Table 2.1 summarizes six classical EEG rhythms in their names, spatial localization, frequency band (spectral localization) and typical associated brain activity. Fig. 2.1 shows a simple structure of brain.

2.1.2 Types of control signal in BCI

A cognitive task will trigger a great many simultaneous phenomena in brain. Due to human’s limited understanding of the brain’s operation, most of these phenomena are incomprehensible and cannot be traced to their origins. However, a few of them have been decoded and therefore can be used in interpreting brain activity, thus their usage in BCI systems. These signals are called control signals in BCI systems. There are two main types of control signals: evoked signals and spontaneous signals [Lotte, 2008]. Evoked signals are generated unconsciously when a subject acknowledges a specific stimulus. They are also called evoked potentials. Their main advantage when compared with spontaneous signals is that they do not need subjects trained before
Table 2.1: Summary of EEG rhythms.

<table>
<thead>
<tr>
<th>Name</th>
<th>Frequency band</th>
<th>Spatial location</th>
<th>Brain activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta</td>
<td>1-4 Hz</td>
<td>N/A</td>
<td>Deep sleep</td>
</tr>
<tr>
<td>Theta</td>
<td>4-7 Hz</td>
<td>N/A</td>
<td>Drowsiness</td>
</tr>
<tr>
<td>Alpha</td>
<td>8-12 Hz</td>
<td>Occipital lobe</td>
<td>Relaxation state</td>
</tr>
<tr>
<td>Mu</td>
<td>8-13 Hz</td>
<td>Motor and sensorimotor cortex</td>
<td>Perform movements</td>
</tr>
<tr>
<td>Beta</td>
<td>13-30 Hz</td>
<td>N/A</td>
<td>awaken and conscious persons, perform movements</td>
</tr>
<tr>
<td>Gamma</td>
<td>over 30 Hz</td>
<td>N/A</td>
<td>Cognitive and motor functions</td>
</tr>
</tbody>
</table>

![A simple brain structure](http://www.wikipedia.org)

Figure 2.1: A simple brain structure (from www.wikipedia.org).
they interact with BCI systems. They also can achieve a higher information transfer rate than the spontaneous signals. Steady State Evoked Potentials (SSEP) and P300 fall into this type of control signal. Spontaneous signals are intentionally generated by the subject without any external stimulus due to an internal cognitive process. When using these control signals in BCI, quite a large amount of training time is needed. Moreover, these control signals achieve a lower information transfer rate than the first type. However, they can provide a natural way for normal subjects to communicate with BCI systems. Motor and sensorimotor rhythms, and slow cortical potentials fall into this type of control signal. They are much less annoying than evoked signals which are based on infrequent stimulus. This was one reason for this research to focusing on motor-imagery based BCI systems. For comprehensive reviews of control signals in BCI, the readers are referred to the works of Lotte [Lotte, 2008], Gurkok and Nijhilt [Gurkok and Nijholt, 2012], and Nicholas-Alonso and Gomez-Gil [Nicolas-Alonso and Gomez-Gil, 2012]. Table 2.2 shows a summary of the four most used control signals.

![Table 2.2: Summary of control signals.](image)

<table>
<thead>
<tr>
<th>Signal</th>
<th>Physiological phenomena</th>
<th>Required training</th>
<th>Friendly to user</th>
<th>Information transfer rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSEP</td>
<td>Modulations in visual cortex</td>
<td>No</td>
<td>No</td>
<td>60-100 bits/min</td>
</tr>
<tr>
<td>P300</td>
<td>Peaks due to infrequent stimulus</td>
<td>No</td>
<td>No</td>
<td>20-25 bits/min</td>
</tr>
<tr>
<td>SCP</td>
<td>Slow voltage shift</td>
<td>Yes</td>
<td>Yes</td>
<td>5-12 bits/min</td>
</tr>
<tr>
<td>Motor imagery</td>
<td>Modulations synchronized to motor activities</td>
<td>Yes</td>
<td>Yes</td>
<td>3-35 bits/min</td>
</tr>
</tbody>
</table>

2.1.3 Pre-processing methods in BCI

In theory, after data is acquired they need to be cleaned or de-noised, i.e. noises or artifacts are eliminated as much as possible. However, in practice, it is not easy
to separate the pre-processing and feature extraction phases. In this research, pre-processing methods are defined as methods that try to reduce noise or artifacts. By this definition, pre-processing methods are artifact-removal methods only. There are two typical methods for removing artifacts in BCI. Artifacts in EEG signals usually come from muscular, ocular and heart activity [Fatourechi et al., 2007]. They are named as electromyography (EMG), electrooculography (EOG), and electrocardiography (ECG) artifacts, respectively. Artifacts also come from technical sources such as power-line noises or changes in electrode impedances. The first method includes low-pass or band-pass filters which are based on the Discrete Fourier Transform (DFT), Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) [Smith, 1997]. In motor imagery-based BCI systems, low-pass or band-pass filters are usually used to cut off irrelevant frequencies. This method is very efficient when dealing with technical artifacts. The second method widely used for removing artifacts is Independent Component Analysis (ICA). This is a statistical method aimed at decomposing a set of mixed signals into its sources. Pioneer work such as that of Vigario [Vigario, 1997][Vigrio et al., 2000] has aimed at removing ocular artifacts from EEG signals. While ICA has been proven a robust and powerful tool for removing artifacts in the analysis of EEG signals [Fatourechi et al., 2007], reports from some authors suggest that removing artifacts by using ICA may corrupt the power spectrum of the analyzed EEG signal [Wallstrom et al., 2004]. Furthermore, ICA requires that artifacts be independent of the normal activity of the analyzed EEG signal. This requirement is sometimes not easy to satisfy due to the complicated and relatively unknown operation of the brain. In this research, only low-pass and band-pass filters were used for pre-processing EEG signals.

2.1.4 Classifiers in BCI

The task of the classification step is to assign an object represented by a feature vector to a class. Because, this thesis focused on the feature extraction phase of BCI systems, details of feature extraction methods are reviewed in the next section. BCI inherits many classifiers from the pattern recognition field. Researchers in BCI have experimented with many classifiers in the classification phase. Typical and successful classifiers include Linear Discriminant Analysis (LDA), Principal Component Analysis-
sis (PCA), Support Vector Machine (SVM), Hidden Markov Model (HMM), k-nearest neighbours (kNN) and Artificial Neural Network (ANN). For a comprehensive review of classifiers used in BCI, the readers is referred to the work of Lotte et al. [Lotte et al., 2007]. Similar to other pattern recognition systems, classifiers in BCI systems are faced with the well known problem of the curse of dimensionality. This means that to train a good classifier, providing training data whose size increases exponentially with the size of the feature vector is needed. As stated in the brain data acquisition phase, training in BCI is a time-consuming process and not a user friendly task. Therefore, available training sets in BCI are usually small. This make classifiers in BCI easy to overfit the training data. To overcome this problem, researchers tend to choose classifiers which are robust in dealing with small training data. Lotte et al. [Lotte et al., 2007] reported that among the classifiers they tried, LDA and SVM were the best. The research reported here uses SVM as the classifier in the experimented BCI systems due to its frequent and widespread used in BCI systems and multi-class support.

The main idea of Support Vector Machine is that it tries to find hyperplanes in order to both maximize the distance between the nearest training samples and the hyperplanes and minimize the empirical risk. The nearest training samples are called support vectors. Let \(\{x_i, y_i\}, x_i \in \mathbb{R}^d, i = 1, \ldots, n \) be the training data set with two labels \(y_i \in \{-1, +1\} \). Let \(\phi \) be the transformation from the input space to the feature space. The SVM will find the optimal hyperplane [Vapnik, 1995]

\[
f(x) = w^T \phi(x) + b
\]

(2.1)

to separate the training data by solving the following optimisation problem:

\[
\min_{w,b} \left(\frac{1}{2}||w||^2 + CF\left(\sum_{i=1}^{n} \xi_i\right) \right)
\]

(2.2)

subject to

\[
y_i(w^T \phi(x_i) + b) \geq 1 - \xi_i \quad i = 1, \ldots, n
\]

(2.3)

where \(w \) is the normal vector of the hyperplane, \(C \) and \(b \) are real numbers, \(\xi_i, i = 1, \ldots, n \) are non-negative slack variables, and \(F \) is any monotonic convex function.
2.1 Brain-Computer Interface

Further the assumption of $F(u) = u$ will rewrite the optimization problem in Eq. (2.2) as follows:
\[
\min_{w,b} \left(\frac{1}{2}||w||^2 + C \sum_{i=1}^{n} \xi_i \right)
\]
subject to
\[
y_i(w^T \phi(x_i) + b) \geq 1 - \xi_i \quad i = 1, \ldots, n
\]
Krush-Kuhn-Tucker theory is then applied to solve the optimization in Eq. (2.4). For more information about SVM, the readers are referred to the original work of Vapnik [Vapnik, 1995].

2.1.5 Existing BCI Applications and Systems

While the origin purpose of BCI research is to provide a new communication channel for people who are suffering from sever motor disabilities, BCI applications has been not limited to application for disabilities but extend to for normal people. Nicholas-Alonso et al. [Nicolas-Alonso and Gomez-Gil, 2012] targeted BCI applications to three groups of user: Complete Locked-In State patients; Locked-In State patients; and able-bodied people or those who can control their neuromuscular systems. The applications for the last group are used to extract such as affective information which is difficult to reveal if using different technologies. Nicholas-Alonso et al. [Nicolas-Alonso and Gomez-Gil, 2012] went further to divide current BCI applications and systems into six main categories including communication, motor restoration, environmental control, locomotion, entertainment and others. While acknowledging a huge potential market of these applications, the authors raise some concerns about some ethical issues when BCI technology can be used to manipulate the brain and consumer behaviour.

Almost BCI systems described above are wired. In these systems, communication between the data acquisition component and other components is through wired transmission. For some applications such as of locomotion, wired communication is not flexible enough. Due to this reason, some researchers have been trying to develop wireless-based BCI systems [Seungchan Lee,].
2.2 Feature extraction in BCI systems

2.2.1 Feature extraction in general BCI systems

Feature extraction in BCI systems is defined as a component “that translates the (artifact-free) input brain signal into a value correlated to the neurological phenomenon” [Mason et al., 2007]. A feature, therefore, is defined as a value correlated to the neurological phenomenon. The feature extraction is also called noise reduction or filtering. The output of feature extraction forms a feature vector which is usually significantly shorter and contains more relevant information than the brain input signal. The feature extraction methods fall into two main categories. The first involves methods which use a single channel for extracting features. The second involves methods which use information from more than one channel for extracting features.

For an easy review of the features, let $X = \{x\}$ be a set of brain signals which have N channels, $Sub = \{s\}$ be a set of subjects who generate X, and $Lab = \{l\}$ be a set of class brain imagery or non-imagery actions. The notations $X(t)$ and $x(t)$ were used in order to emphasize the time-series property of the signal. The subscript i was used with x when the thesis wanted to distinguish trials from each other. Without any explanation, x was treated as a univariate signal. Otherwise, it was treated as a multi-variate signal. Similarly, l_i and s_i were used when the thesis wanted to distinguish class labels and subjects, respectively.

Single-channel feature extraction methods

A great number of features [Bashashati et al., 2007], [Lotte et al., 2007] have been tried and applied on BCI systems. The most simple feature extracted from individual channels is the amplitude of the signal or raw data [Hoffmann et al., 2005], [Rivet and Souloumiac, 2007], [Sitaram et al., 2007], [Gottemukkula and Derakhshani, 2011]. Accompanied by other dimension reduction techniques such as sub-sampling, this kind of simple feature can achieve quite a good performance in BCI systems which, however are not based on motor imagery but on P300 [Hoffmann et al., 2005], [Rivet and Souloumiac, 2007] or other data acquisition techniques such as functional near infrared spectroscopy (fNIRS) [Sitaram et al., 2007], [Gottemukkula and Derakhshani, 2011].
2.2 Feature extraction in BCI systems

Obermeier [Obermaier et al., 2001a] attempted to use Hjorth parameters or Time domain Parameters for the online classification of a right and left imagery problem. They extracted Hjorth parameters including activity, mobility, and complexity from channel C3 and C4 of a single trial EEG signal forming a 6-dimension feature vector for each segment. A Hidden Markov Model was used as the classifier in their work. Their system achieved accuracy of 81.4±12.8 in percentage terms. They concluded that their system can be used in online motor imagery classification.

\[
Activity(x(t)) = VAR(x(t)) \quad (2.6)
\]

\[
Mobility(x(t)) = \sqrt{\frac{Activity\left(\frac{dx(t)}{dt}\right)}{Activity(x(t))}} \quad (2.7)
\]

\[
Complexity(x(t)) = \frac{Mobility\left(\frac{dx(t)}{dt}\right)}{Mobility(x(t))} \quad (2.8)
\]

Band power features were used by Pfurtscheller et al. [Pfurtscheller et al., 1997] also in a right and left imagery problem. They experimented on 3 subjects with a 128Hz EEG recording. For each subject, different frequency components belong to alpha (\(\alpha\)) and beta (\(\beta\)) bands which contributed most on discrimination between two types of movement. Their system achieved accuracy of approximately 80%. Later, Palaniappan [Palaniappan, 2005], [Obermaier et al., 2001b] used spectral powers in several BCI systems. In Palaniapan’s experiments, four subjects were asked to perform four mental tasks with a 6-electrode EEG system. Spectral powers of four frequency bands including delta and theta, alpha, beta and gamma of all 6 channels were calculated and used as features which fed into a neural network classifier. They reported that in single mental tasks, this system could achieve an accuracy up to 97.5% with the most suitable mental task. There was no further report on 2-class or multi-class experiments. By comparison, Obermeier et al. [Obermaier et al., 2001b] reported that their system achieved at most an accuracy of 96% with 2 mental tasks and at most of 67% with 5 mental tasks. By using band power as features, Obermeier et al. aimed to measure variance in some specific frequency bands and hoped that specific patterns over different electrodes existed. They found that band power features are well suited for motor-related problems such as motor imagery or motor execution tasks. There is a link between band powers and Hjorth parameters. Navascues and Sebastian in [Navascus and Sebastin, 2009] proved that derivatives of a signal could be represented
by the signal’s spectral powers in the frequency domain. Consequently, the mobility and complexity of a signal can be calculated based on the signal’s spectral powers. Recently, Brodu et al. [Brodu et al., 2011] conducted an empirical experiment in which band power estimation algorithm is the best one. They came to the conclusion that, for a motor imagery task, the Morlet wavelet is the best algorithm to extract band power information from an EEG signal.

Autoregressive (AR) model parameters and its adaptive version (AAR) are other widely used features in BCI systems. The main purpose of the autoregressive model, as shown in Eq.(2.9), is to estimate data at time t by a weighted sum of previous data values and a noise term $e(t)$. The adaptive autoregressive model extends the original model by assuming that the weight a_i can be varied over time instead being fixed. Both of them depend on the parameter p which is called the order of the model.

$$x(t) = \sum_{i=1}^{p} a_i x(t - i) + e(t)$$

(2.9)

Researchers have tried to fit an EEG signal with a model as closely as possible so that the model parameters a_i can be used as features representing the corresponding EEG signal. Penny et al. [Penny et al., 2000] used AR model parameters as features to classify motor imagery tasks with an accuracy of 61% without the reject option and 87% with the reject option. They used a Bayesian logistic regression model as classifier. Obermeier [Obermaier et al., 2001a] tried AAR model parameters in the same experiment with Hjorth parameters as features. Its accuracy was about 72.4±8.6%. Because they used AAR parameters with an LDA classifier there is no possible comparison made between these two feature extraction methods. Tavakolian et al. [Tavakolian et al., 2006] tried AAR parameters on well known dataset III of the BCI Competition 2003 and found that the system’s accuracy was quite stable at about 82-84% with different classifiers. The main advantage of the AR and AAR model parameters is that they are parametric methods for feature extraction. By adjusting their model orders, they can control the trade off between accuracy and overfit issues.

Due to their easy computation, these linear features, including Hjorth parameters, band powers and AR model parameters are popular and usually used as benchmarks or in quick feedback sessions in BCI experiments. However, as noted above, these
2.2 Feature extraction in BCI systems

features cannot achieve the acceptable accuracy when they are used in multi-class BCI systems.

Besides linear features, researchers have been trying non-linear features in BCI systems. The first question they want answered is whether or not non-linear properties exist in brain signals. Andrejak and his co-workers [Andrejak et al., 2001] pointed out that there are some indications of nonlinear deterministic and finite-dimensional structures in the time series of brain EEG signals depending on brain region and brain state. They reported that there are strong indications of non-linear deterministic dynamics for epilepsy seizure activity. For other brain tasks such as eye opening or closing, there are less strong indications of non-linear properties. Based on this work, Gautama et al. [Gautama et al., 2003] reconfirmed there were non-linear indications in EEG brain signals and further proposed the Delay Vector Variance method for use in classification tasks. They also proved that their proposed Delay Vector Variance method outperforms the other two nonlinear methods named the third-order autocovariance and the asymmetry due to time reversal. Although there are signs of non-linear properties in brain signals, non-linear features are considered less efficient than linear features in motor imagery EEG-based systems. For example, Boostani et al. [Boostani and Moradi, 2004] conducted their experiments with 5 subjects in 6-electrode EEG recording systems for 2 motor imagery tasks. They experimented with 3 features including band power, Hjorth parameters and Fractal dimension. Their experimental results show that in the training phase, the Fractal dimension feature was not as good as the Band Power feature. In the testing phase, with a few specific subjects and at some specific tasks, the Fractal dimension can achieve better accuracy. It is noted that the Fractal dimension feature was used with an Adaboost classifier while the other two features were used with an LDA classifier. Zhou et al. [Zhou et al., 2008] argued that by assuming linearity, Gaussianity and minimum-phase within the EEG signals, most conventional feature extraction methods based on band power or AR models focus only on frequency and power information; they ignore phase information which plays a very important role in the process of generating EEG signals. They proposed using high order statistics extracted from bispectrum of EEG signals as features. These nonlinear features reflect phase relationships between frequency components of the signal. To test their idea,
the authors conducted experiments on the Graz BCI data set of the BCI Competition 2003 which has 280 trials with 2 mental tasks. They also experimented with different classifiers including LDA, SVM and NN. Their results show that for all classifiers used, their proposed features outperformed those of winners of the competition in the same dataset. Sharing the idea of using information of power of the signal between different frequencies, a number of researchers have used power spectral density (PSD) or power spectrum as features [Dressler et al., 2004], [Madan, 2005], [Cona et al., 2009], [Lotte, 2008], [Lotte et al., 2009], [Lotte and Guan, 2011]. This feature is now the most preferred feature used in BCI systems [Lotte, 2008]. Recent work of Krusienski et al. [Krusienski et al., 2012] re-emphasizes that phase information has been under-utilized in BCI research. The most favoured and widely used feature extracted from phase information is the phase locking value (PLV) proposed by Lachaux et al. [Lachaux et al., 1999]. Gysels et al. [Gysels and Celka, 2004], Wei et al. [Wei et al., 2007], and Krusienski et al. [Krusienski et al., 2012] are among the few authors attempted to use PLV in BCI systems. Wei et al. [Wei et al., 2007] showed that by combining phase information with other conventional features such as BP and AR-based features they can enhance the performance of BCI systems. Later work of Krusienski et al. in 2012 [Krusienski et al., 2012] has claimed a similar conclusion namely that combining phase information with other spectral features extraction by the Fast Fourier Transform or Magnitude-Squared Coherence can improve accuracy of BCI systems. A further extension of the trend of utilizing information between different frequencies has come to spatio-temporal models with data being analyzed from both spectral and time domains at the same time. In this matter, wavelet analysis is the most popular technique and it has been applied in BCI systems. Wu et al. [Ting et al., 2008] compared using wavelet packet decomposition as the feature extraction method to other popular methods based on an AR model and Fast Fourier Transform on a dataset of the BCI Competition 2003. They reported that wavelet packet decomposition achieves promising results. Others [Sherwood and Derakhshani, 2009], [Asensio-Cubero et al., 2011] have tried to find out what types of wavelets are suitable for BCI tasks. For motor imagery BCI systems, Sherwood [Sherwood and Derakhshani, 2009] claimed that wavelet methods using sub-band energy were the best. Asesino [Asensio-Cubero et al., 2011], on the other hand, believed that using
2.2 Feature extraction in BCI systems

Genetic algorithms was a more suitable wavelet method for BCI tasks. A recent and more comprehensive work comparing linear and nonlinear features was undertaken by Balli and Palaniappan [Balli and Palaniappan, 2010] who analysed seven non-linear features including: approximate entropy, largest Lyapunov exponents, correlation dimension, non-linear prediction error, Hurst exponent, higher order auto covariance, and asymmetry due to time reversal in three biological signal datasets. These seven non-linear features were compared with two linear features that based on the AR model. They found that linear features such as AR model coefficients and AR reflection coefficients achieved higher accuracy than non-linear features and, that when combining linear and non-linear features together they could achieve higher accuracy than when done individually. Specifically, the combination of linear and nonlinear features can improve by about 7.45% with the finger-movement EEG dataset and 6.62% with the epileptic EEG dataset. They drew the conclusion that a combination of linear and nonlinear features could be a better approach for doing classification in BCI systems. It can be seen that using non-linear features alone is not a good option with BCI systems. Therefore, they are often used in combination with linear features or in epileptic seizure detection EEG-based systems.

A summary of popular feature extraction methods based on individual channel is provided in Table 2.3.

Multi-channel feature extraction methods

The above mentioned features do not take into account the coupling of brain regions. A feature is extracted from a single channel does not capture the relations between the channels in multichannel EEG recording systems. Such relations are believed to be important in assessing the level of functional connectivity between the two brain areas, identifying brain states and pathological activities as they contain clinical relevance, and showing communication between different brain areas [Quiroga et al., 2002]. In short, they could help researchers understand more about the brain and its operation. Synchronous features or multivariate features have been proposed to overcome this limitation. Actually, synchronization measures can be viewed as an approach to improve the spatial resolution of EEG signals which is very low ($\approx 1\text{cm}$) [Ariely and Berns, 2010]. Moreover, while the features described above are being
2.2 Feature extraction in BCI systems

<table>
<thead>
<tr>
<th>Feature</th>
<th>Feature Type</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw data</td>
<td>Raw</td>
<td>Fast</td>
<td>Low accuracy</td>
</tr>
<tr>
<td>Hjorth parameters</td>
<td>Time domain</td>
<td>Fast</td>
<td>Low accuracy</td>
</tr>
<tr>
<td>Band power</td>
<td>Frequency domain</td>
<td>Fast, modest acc-</td>
<td>unsuitable for multi-class</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uracy</td>
<td></td>
</tr>
<tr>
<td>Autoregressive model</td>
<td>Time domain</td>
<td>Fast, parametric</td>
<td>Low accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>method</td>
<td></td>
</tr>
<tr>
<td>Power spectral density</td>
<td>Frequency domain</td>
<td>Fast, modest acc-</td>
<td>not high accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uracy</td>
<td></td>
</tr>
<tr>
<td>Fractal dimension</td>
<td>Non-linear</td>
<td>Fast</td>
<td>Low accuracy</td>
</tr>
<tr>
<td>Phase information</td>
<td>Non-linear</td>
<td>Meaningful</td>
<td>Low accuracy</td>
</tr>
</tbody>
</table>
extracted from the temporal and frequency domains, synchronization measures are providing information from the spatial domain. These multivariate features can be categorized into two categories. The first contains the features which are directly extracted through multivariate models such as multivariate autoregressive (MVAR) parameters, bilinear AR parameters, non-linear inter-dependencies, phase synchronization, mutual information, cross correlation and coherence function. The second category features use multivariate models such as filters to enhance signals before applying simple feature extraction in order to extract meaningful feature.

In regard to the first category, Quiroga et al. in their work [Quiroga et al., 2002] analysed various synchronization features, including cross correlation (2.10), coherence function (2.12), nonlinear inter-dependencies (2.13, 2.14, 2.15), phase synchronization and mutual information (2.16), on three typical EEG datasets. They drew the conclusion that synchronization measures can complement visual analysis and even be of the clinical values.

\[
c_{xy}(\tau) = \frac{1}{N-\tau} \sum_{t=1}^{N-\tau} \left(\frac{x(t) - \bar{x}}{\delta_x} \right) \left(\frac{y(t+\tau) - \bar{y}}{\delta_y} \right) \tag{2.10}
\]

\[
C_{xy}(\omega) = F_x(\omega) F_y^*(\omega) \tag{2.11}
\]

\[
\Gamma_{xy}(\omega) = \frac{|C_{xy}(\omega)|}{\sqrt{|C_{xx}(\omega)| \cdot |C_{yy}(\omega)|}} \tag{2.12}
\]

\[
S^p(x|y) = \frac{1}{K} \sum_{i=1}^{K} \log \frac{R_i^p(x)}{R_i^p(x|y)} \tag{2.13}
\]

\[
H^p(x|y) = \frac{1}{K} \sum_{i=1}^{K} \log \frac{R_i(x)}{R_i^p(x|y)} \tag{2.14}
\]

\[
N^p(x|y) = \frac{1}{K} \sum_{i=1}^{K} \frac{R_i(x) - R_i^p(x|y)}{R_i(x)} \tag{2.15}
\]

\[
MI(x, y) = \text{Entropy}(x) + \text{Entropy}(y) - \text{Entropy}(x, y) \tag{2.16}
\]

Another approach for discovering spatial information from multichannel EEG signals is using multivariate models. Schlogl et al. [Schlögl and Supp, 2006] used MVAR parameters to analyze even-related EEG data. The typical formula of a multivariate
2.2 Feature extraction in BCI systems

The autoregressive model is shown in Eq. (2.17). The only difference between equations (2.17) and (2.9) is that x, a and e respectively become d-dimensional, d-by-d-dimensional and d-dimensional vectors.

$$x(t) = \sum_{i=1}^{p} a_i x(t - i) + e(t)$$ \hspace{1cm} (2.17)

From MVAR parameters, Quiroga et al. derived several measures, including auto and cross spectra, phase relations, coherency, partial coherence, partial directed coherence, direct transfer function, and full frequency direct transfer function. They did not concentrate on analyzing performance improvement in the use of MVAR parameters. Instead, they focused on investigating various aspects of multichannel spectral properties of EEG and attempted to explain interacting activity between different brain areas. The authors concluded that MVAR is an feature easy to use for investigating such tasks. Nolte et al. [Nolte et al., 2004] used the imaginary part of coherency to find out brain interaction when there is movement of subject from EEG data. From a finger-movement EEG recording dataset, they found out two important results. The first is that from about 5 seconds before through to movement onset, there is a weak interaction of around 20Hz between left and right motor areas. The second is that from about 2 to 4 seconds after movement, there is a stronger interaction also at 20 Hz. These two interactions are in opposite directions. The researchers concluded that it is possible to detect brain interaction during movement from EEG data. Anderson et al. [Anderson et al., 1998] extracted multivariate autoregressive model parameters from a 4-subject 2-mental task EEG dataset. They exploited four features from 6 channels including AR model coefficients, MVAR model coefficients, eigenvalues of correlation matrix, and the Karhunen-Loeve transformed version of the second feature. All were fed them into a multi-layer neural network for classification. The results showed that the four features achieved similar results but with the MVAR feature slightly better and more consistent in the testing phase. It could achieve accuracy at 91.4% in the testing phase. Recently, in a comprehensive analysis by Brunner et al. [Brunner et al., 2010], [Brunner et al., 2011] experiments were conducted to compare various types of autoregressive model features for BCI including univariate, multivariate, bilinear AR parameters, and logarithmic band power. They used dataset 2a from the BCI Competition IV [Brunner et al., 2008], and suggested that
there is no significant difference between AR-based features and Band Power features in improving BCI systems' accuracy. Regarding the comparison of AR-based features, they found that multivariate AR features are better than univariate and bilinear AR ones. They also drew the conclusion that optimizing parameters individually for each subject yields equally high results as using default parameters.

Among features that fall into the second category, Common Spatial Patterns (CSP) [KOLES, 1991], [Blankertz et al., 2008b] is a very robust feature that illustrates the idea of using multivariate models as filters. Currently, CSP is a state-of-the-art feature of motor imagery-based BCI systems. Due to its importance, a review detailing CSP is provided in next section. Besides CSP, Independent Components Analysis (ICA) is also applied in several works [Naeem et al., 2006], [Gouy-Pailler et al., 2008], [Wang and Jung, 2013] although its original purpose is for removing artifacts in EEG signals [Vigrio, 1997], [Vigrio et al., 2000]. ICA shares with CSP the idea of finding a matrix for improving spatial resolution in EEG multichannel signals. The main difference between the two is that CSP is a supervised method while ICA is unsupervised. Class information in the CSP method is a priori. Naeem et al. in their work [Naeem et al., 2006] experimented with various ICA methods including Informax [Bell and Sejnowski, 1995], FastICA [Hyvriinen and Oja, 1997] and SOBI [Belouchrani et al., 1997]. They reported that, in overall, CSP achieved better results than ICA-based methods. As CSP is a proven state-of-the-art method for feature extraction in motor imagery-based BCI systems, this research followed the second trend in dealing with multivariate models.

Common Spatial Patterns

The CSP method was originally proposed by Koles [KOLES, 1991] in EEG signal processing as a means of analyzing the abnormal components in clinical research and then successfully applied to motor imagery-based 2-class BCI systems [Blankertz et al., 2008b] [Ramoser et al., 2000]. The idea of CSP is to map the data of two classes onto the same dimension such that the variance of one class is maximized while the variance of the other is minimized. Let x_i be data of the i-th trial in a dataset of M trials. A trial consists of N channels $x_k(s) = (x_{k1}^s, x_{k2}^s, \ldots, x_{kS}^s)$ where $k \in \{1, \ldots, N\}$ is the channel index, $s \in \{1, \ldots, S\}$ is the sample index of the signal,
and S is the number of samples. The i-th trial belongs to a class $L(x_i)$ of mental action or motor imagery. Assuming that there are K classes in the dataset, we have $L(x_i) \in \{1, \ldots, K\}$.

Let $Cov(x_q) = x_q x_q^T$ be the covariance matrix of trial x_q and C_k be the estimated covariance matrix of all trials in the k-th class. We use an empirical method to estimate this covariance matrix.

$$C_k = \sum_{x_q: L(x_q)=k} \frac{1}{|x_q|} Cov(x_q) = \sum_{x_q: L(x_q)=n} x_q x_q^T \quad (2.18)$$

Given 2 covariance matrices C_1 and C_2 corresponding to the two classes of the dataset, CSP analysis aims to find a matrix V to simultaneously diagonalize these two matrices:

$$C_1 = V \lambda_1 V^T \quad (2.19)$$

$$C_2 = V \lambda_2 V^T \quad (2.20)$$

subject to

$$\lambda_1 + \lambda_2 = I \quad (2.21)$$

More specifically, from C_1 and C_2, we derive the common covariance matrix which is then factorized as follows:

$$C = C_1 + C_2 = U_0 \lambda U_0^T \quad (2.22)$$

The whitening transformation matrix is then extracted,

$$P = \lambda_0^{\frac{1}{2}} U_0^T \quad (2.23)$$

Newly transformed covariance matrices are then calculated based on the matrix P,

$$C'_1 = P C_1 P^T \quad (2.24)$$

$$C'_2 = P C_2 P^T \quad (2.25)$$
The two newly transformed covariance matrices now share the same common eigenvectors and the sum of their corresponding eigenvalues is one. This means that if we decompose C'_1 and C'_2 further, we have

$$C'_1 = U\lambda_1 U^T,$$ \hspace{1cm} (2.26)
$$C'_2 = U\lambda_2 U^T,$$ \hspace{1cm} (2.27)

and

$$\lambda_1 + \lambda_2 = I.$$ \hspace{1cm} (2.28)

The projection matrix $V = U^T P$ which projects the covariance matrices C_1 and C_2 as

$$C''_1 = U^T PC_1 P^T U = VC_1 V^T = \lambda_1,$$ \hspace{1cm} (2.29)
$$C''_2 = U^T PC_2 P^T U = VC_2 V^T = \lambda_2.$$ \hspace{1cm} (2.30)

leads to

$$C'_1 + C'_2 = \lambda_1 + \lambda_2 = I.$$ \hspace{1cm} (2.31)

This means that if the variance of signal of one class increases, the other will decrease and vice versa. This property of Eq. (2.31) provides an excellent way to discriminate the projected signal through the Common Spatial Patterns (CSP) projection matrix V. Furthermore, assuming that the eigenvalues in λ are decreasingly sorted, the first and the last filter from CSP will have the most discriminative attributes in the 2-class classification. In practice, to avoid the overfitting problem and reduce the processing time, only a few spatial filters are selected for classification. Blankertz et al. [Blankertz et al., 2008b] proposed using at most 6 spatial filters. Let $m < \frac{M}{2}$ be the number of filters extracted from each end of V. Then in total, the filtered matrix W will consist of $2 \times m$ columns. The filtered signal $y(t)$ is calculated as

$$y(t) = W^T x(t).$$ \hspace{1cm} (2.32)

The feature vector of the signal x is calculated by taking the logarithm variance of each component of the the filtered signal as shown in equations (2.33) and (2.34).

$$Feature(x^k) = \log(var(y^k(t)))$$ \hspace{1cm} (2.33)

$$Feature(x) = (Feature(x^1), Feature(x^2), \ldots, Feature(x^{2 \times m}))$$ \hspace{1cm} (2.34)
2.2 Feature extraction in BCI systems

Blankertz et al. [Blankertz et al., 2008b] also noted that finding the matrix V is actually to find the common basis of the two classes, and its solution can be achieved by solving a generalized eigenvalue problem.

Another popular form of the CSP problem is formulated as an optimization problem of the function $J(V)$ as was introduced in [Lotte and Guan, 2011] which is defined in Eq. (2.35).

$$J(V) = \frac{V^T C_1 V}{V^T C_2 V}$$ (2.35)

It is easy to see that $J(V) = J(kV)$ with any $k \in \mathbb{R}$. Therefore a value of k can be chosen so that the denominator in Eq. (2.35) is equal to 1. The optimization problem is then rewritten as follows

$$\text{maximize (or minimize)} \quad V^T C_1 V$$
$$\text{subject to} \quad V^T C_2 V = 1.$$ (2.36)

Applying the Lagrange multiplier method, instead of optimizing Eq. (2.36), to optimize the function $L(\lambda, V)$, Eq. (2.37) is needed.

$$L(\lambda, V) = V^T C_1 V - \lambda V^T C_2 V - 1$$ (2.37)

Taking the derivative of function L with respect to variable V will lead us to an expected V which optimizes L.

$$\frac{\delta L}{\delta V} = 2V^T C_1 - 2\lambda V^T C_2 = 0$$
$$C_1 V = \lambda C_2 V$$ (2.38)
$$C_2^{-1} C_1 V = \lambda V$$

The resulting equation shows that there is a standard eigenvalue problem and its solutions are the eigenvectors of the matrix $C_2^{-1} C_1$. From these eigenvectors, a few spatial filters can be extracted as suggested in [Blankertz et al., 2008b].

Later, several extensions and variants were proposed to optimize CSP in various optimization problems. Lemm et al. [Lemm et al., 2005] proposed an extension of CSP to state space called common spatio-spectral patterns (CSSP). By doing that, they could individually tune frequency filters and therefore improve the learning process. As shown in Eq. (2.32), the purpose of CSP is to find filters W to project
2.2 Feature extraction in BCI systems
data into CSP space which then can be utilized for classification. The CSSP instead attempts to find two W projection matrices. The first matrix is the same as W in Eq. (2.32), while the second matrix, named W_τ, looks like the matrix W but is extracted from a time delay embedding space specified by the parameter τ. Therefore, the CSSP can be considered as a CSP method with a time delay embedding space (or state space). Eq. (2.39) shows the above explanation.

$$y(t) = W^T x(t) + W_\tau^T x(t + \tau)$$

$$y(t) = [W^T, W_\tau^T] \begin{bmatrix} x(t) \\ x(t + \tau) \end{bmatrix}$$

(2.39)

The meaning of spatio-spectral patterns can be seen by rewriting Eq. (2.39) in an individual channel formula. Assuming that there are m selected filters corresponding to m selected channels.

$$y(t) = \sum_{i=1}^{m} W_i^T x_i(t) + W_\tau^T x_i(t + \tau)$$

$$y(t) = \sum_{i=1}^{m} \lambda_i \left(\frac{W_i^T}{\lambda_i} x_i(t) + \frac{W_\tau^T}{\lambda_i} x_i(t + \tau) \right)$$

(2.40)

Now for each channel, λ_i can be viewed as a pure spatial filter while the sequence $\frac{W_i^T}{\lambda_i}, 0, \ldots, 0, \frac{W_\tau^T}{\lambda_i}$ forms a finite impulse response filter which is a spectral filter. So for each channel, the CSSP matrix will tune both spatial and spectral filters for an individual subject. It leads to an improved performance of motor imagery-based BCI systems.

Lotte and Guan [Lotte and Guan, 2011] proposed using a regularized CSP to improve BCI performance. Their idea comes from the fact there is missing information when computing the covariance matrix for each class and in setting the optimization conditions for the objective function. Specifically, they proposed two unified frameworks for regularizing CSP. The first framework is at the covariance matrix estimation level. The second is at the objective function level. They argued at the covariance matrix estimation level due to the noise of the small training set, Eq. (2.18) is not sufficient for estimating the covariance matrix of each class, a weakness which can lead to poor spatial filters. They believed that by adding regularization terms, these disadvantages can be addressed. The new formula for estimating the covariance matrix
for each class becomes as follows.

\[\hat{C}_k = (1 - \lambda) \hat{C}_k + \lambda I \] \hspace{1cm} (2.41)

with

\[\hat{C}_k = (1 - \beta) s_k C_k + \beta G_k \] \hspace{1cm} (2.42)

where \(C_k \) is the original covariance matrix estimation from Eq. (2.18) for class \(k \), \(\hat{C}_k \) is the regularized estimate, \(I \) is the identity matrix, \(s_k \) is a constant scaling parameter, \(G_k \) is a generic covariance matrix, and \(\lambda \) and \(\beta \) are the two regularization parameters. The first parameter, \(\lambda \), is used to control bias due to the small training set, and to attract the estimate to the identity matrix. The second parameter, \(\beta \), is used to make the estimate more stable by shrinking the result to a generic covariance matrix \(G_k \). This matrix is estimated from previous brain signals and is prior information about how an estimated covariance matrix should be appeared. The regularized estimate of covariance matrices \(C_k \) can then be used as usual in learning the CSP as described above.

At the objective function level, Lotte and Guan added a regularization term to penalize solutions which do not satisfy given prior information. The regularized objective function of the original objective function in Eq. (2.35) is as follows.

\[J_{P_1}(V) = \frac{V^T C_1 V}{V^T C_2 V + \alpha P(V)} \] \hspace{1cm} (2.43)

where \(P(V) \) is a penalty function. The better the solutions, the lower the values of \(P(V) \). So, to maximize the function \(J_{P_1}(V) \), it is necessary to minimize \(P(V) \) at the same time. By this mean, it is anticipated that the resulting spatial filters can be guided towards the good ones. There is only one regularization parameter, \(\alpha \), in the formula. There are two popular choices for the penalty function \(P(V) \): the quadratic form as in Eq. (2.44) or non-quadratic form as in Eq. (2.45).

\[P(V) = \| V \|_K^2 = V^T K V \] \hspace{1cm} (2.44)

\[P(V) = \| V \|_K^1 = V^T K \] \hspace{1cm} (2.45)

where \(K \) is the matrix that encodes prior information. While Eq. (2.44) forms L2-norm regularization, Eq. (2.45) forms L1-norm regularization. These regularized
problems can be solved by applying a similar technique to that used in solving the optimization problem in Eq. (2.36). However, the spatial filters can be selected from only one end of the solution instead of both as in a CSP problem. To select the other end of the solution the following problem needs to be solved:

\[
J_{F_2}(V) = \frac{V^T C_2 V}{V^T C_1 V + \alpha P(V)}.
\] (2.46)

Combining these two solutions means that similar solutions of the CSP problem can be found. Lotte and Guan [Lotte and Guan, 2011] claimed that these two unified frameworks of regularized CSP problems could cover most of the previous works including Composite CSP [Kang et al., 2009], regularized CSP with generic learning [Lu et al., 2009], regularized CSP with diagonal loading [Ledoit and Wolf, 2004], and Invariant CSP [Blankertz et al., 2008a]. Besides that, they proposed new regularized CSPs including a regularized CSP with selected subjects, a CSP with Tikhonov regularization, a CSP with weighted Tikhonov regularization, and a spatially regularized CSP. They compared all these regularized CSP methods on three popular datasets including Datasets IIIa and IVa of the BCI Competition III and Dataset IIa of the BCI Competition IV. They claimed that the best regularized CSP can outperform a conventional CSP by almost 10% in median classification accuracy. Working in the same direction, Yong et al. [Yong et al., 2008] and Wang et al. [Wang et al., 2012], argued however, that because the conventional CSP method uses L2-norm it is sensitive to outliers. They instead proposed using an L1-norm in the CSP formulation. They reported that an L1-norm-based CSP is robust to outliers. Arvaneh et al. [Arvaneh et al., 2011] moved on a different direction proposing an extension to CSP called sparse CSP. Their method tried to select the least number of channels from multi-channel EEG data which satisfy certain classification accuracy. This method is actually a channel selection method based on CSP. The authors reported that their method could significantly reduce number of channels and achieve a better classification accuracy than other existing methods based on the Fisher criterion, mutual information, support vector machine, CSP and regularized CSP. However, Lotte and Guan [Lotte and Guan, 2011] claimed that sparse CSP generally achieves lower performance than CSPs with all channels.

On the matter of utilizing operational frequency band in constructing CSPs, Novi et al. [Novi et al., 2007] and Ang et al. [Ang et al., 2008], [Ang et al., 2012] proposed
to use bands of frequency for optimizing the selected operational frequency. Novi et al. named their method Sub-band Common Spatial Patterns (SBCSP), while Ang et al. named their method Filter Band Common Spatial Patterns (FBCSP). Both works shared the main idea that the EEG signal will be bandpass-filtered into multiple frequency bands. The original CSP method is used to extract features as usual for each frequency band. A feature selection will then be employed to select the most discriminative CSP features in each band as in SBCSP, or in all bands as in FBCSP. For SBCSP, an additional step in scoring each band’s CSP features needs to be undertaken before putting them in a final classifier. FBCSP does not need this step. So, the main difference between these two works is at the level at which they fuse results. FBCSP does fusion at the feature level, while SBCSP does it at the classification result or score level. Novi et al. experimented with their method on Dataset 4a from the BCI Competition III while Ang et al. experimented with Dataset 2a and 2b of the BCI Competition IV. Both sets of researchers claimed that their methods outperform the original CSP method. Novi et al. reported that their proposed method SBCSP is better than the original CSP and also CSSP [Lemm et al., 2005] methods, while, Ang et al. claimed that FBCSP is not only better than the original CSP, but also the SBCSP method on the datasets of the BCI Competition IV.

The final CSP variant as to take into account in phase information is called analytic Common Spatial Patterns proposed by Falzon et al. [Falzon et al., 2012]. Similar to the conventional CSP method, the analytic CSP aims to find a set of spatial filters that maximizes variance of one class while minimizing the variance of the other. However, instead of analyzing using original data, the analytic CSP does the analysis on the analytic representation of the signal. Therefore the formula in Eq. (2.35) is converted to its corresponding complex domain form as in Eq. (2.47).

\[J(V) = \frac{V^*C_1V}{V^*C_2V} \]

where operator \((.)^*\) denotes the conjugate transpose in complex domain. The resulting spatial filters now consist of complex numbers which can be split into magnitude and phase components. These two components can therefore provide better discrimination and explanation of underlying brain activity. The authors conducted experiments on both simulation and real EEG data. On the real two-class EEG data, they claimed
that the analytic CSP can improve classification accuracy depending on the number of channels used. When considering all 27 channels, their method can slightly improve performance compared with the conventional CSP. However, when considering only 6 channels in the occipital region, the analytic CSP could enhance about 7% in classification accuracy compared with the conventional.

2.2.2 Feature extraction in Multi-class BCI systems

Although CSP is very successful in 2-class BCI classification systems, applying it to multi-class BCI systems still remains a problem [Grosse-Wentrup and Buss, 2008], [Wei et al., 2010]. The main challenge of extending CSP to multi-class BCI problems is to find common principal components for multi-class data. Dornhege et al. [Dornhege et al., 2004] in their pioneer work to CSP extensions proposed using feature combination and multi-class paradigms to boost bit rates of BCI systems. In dealing with multi-class BCI systems, they extended the conventional 2-class CSP feature by applying three methods which are using CSP within the classifier (Pair-Wise), One-versus-the-Rest CSP and simultaneous diagonalization. Their results showed that One-versus-the-Rest CSP and simultaneous diagonalization methods are better than using CSP within the classifier in MBCI systems. Following works inherit what Dornhege et al. did and improve methods used in multi-class BCI systems. Ang et al. applied FBCSP [Ang et al., 2012] into multi-class BCI systems by employing three strategies in converting a multi-class problem into multiple 2-class problems: One-versus-the-Rest, Pair-Wise, and Divide-and-Conquer. They conducted experiments on dataset IIa of the BCI Competition IV. The dataset includes 9 subjects performing 4 motor imagery tasks. They reported that there is no significant difference between the three proposed methods. The One-versus-the-Rest version of FBCSP performed the best and won the competition on the dataset 2a. They also claimed that extracted spatial filters can match with neurophysiological knowledge.

By comparison, following the approach of using simultaneous diagonalization or joint approximate diagonalization (JAD) in dealing with multi-class BCI systems, several research projects have been undertaken including those of [Naeem et al., 2006], [Brunner et al., 2007], [Grosse-Wentrup and Buss, 2008], [Gouy-Pailler et al., 2008], [Gouy-Pailler et al., 2010], [Wei et al., 2010]. These researchers based their work on
2.2 Feature extraction in BCI systems

the idea that 2-class CSP involves actually finding independent common components from EEG data. Naeem et al. [Naeem et al., 2006] and Brunner et al. [Brunner et al., 2007] analyzed different ICA algorithms on finding independent components including Informax [Bell and Sejnowski, 1995], FastICA [Hyvärinen and Oja, 1997] and SOBI [Belouchrani et al., 1997]. They compared the performance of ICA-based methods with other CSP-based methods which derived from the strategies of One-versus-the-Rest and Pair-Wise [Dornhege et al., 2004]. They reported that, overall, CSP-based methods achieve better results than ICA-based methods. Among the ICA-based methods, they reported that Infomax is the best algorithm. The connection between CSP and ICA was analyzed in the work of Grosse-Wentrup et al. [Grosse-Wentrup and Buss, 2008]. The authors point out that CSP by joint approximate diagonalization is equivalent to independent component analysis and in view of this proposed a method for selecting final independent components based on mutual information between independent components and class labels. They applied their method on the dataset IIIa of the BCI Competition III which has three subjects with four motor-imagery tasks and claimed that their proposed method can increase the mean classification accuracy by 23.4% compared with the CSP-based multi-class methods. Gouy-Pailler et al. in recent work [Gouy-Pailler et al., 2008], [Gouy-Pailler et al., 2010] have extended the JAD method for finding spatial filters by using the maximum likelihood method. The researchers suggest that their method is a neurophysiologically adapted version of JAD. Using this method on Dataset 2a of the BCI Competition IV which has nine subjects with four motor-imagery tasks, they reported that their newly proposed JAD method achieved a better classification accuracy than the CSPs method. They also reported that the JAD method is not significantly better than the CSP-based methods as was reported in the work of Grosse-Wentrup et al. [Grosse-Wentrup and Buss, 2008] for the dataset they used. In a separate work, Wei et al. [Wei et al., 2010] applied quadratic optimization to find common spatial patterns for multi-class BCI problems. However, in this case they conducted experiments on their own dataset instead on more widely used datasets so it is difficult to compare their results with previously noted research results.

In summary, methods of dealing with multi-class BCI systems can be categorized into two main groups. The first is based on the 2-class CSP methods, while the
second group is based on joint approximate diagonalization. In the 2-class CSP-based methods, a current standard approach is to convert the multi-class classification problem to a set of 2-class classification problems. The two well-known methods are One-versus-the-Rest, and a combination of pairs of 2-class classification problems (Pair-Wise). Each of these two methods has its own weakness. The first method assumes the covariances of the rest of the classes are very similar. However, it is hard to observe this assumption in real-world applications. In the second strategy, there is no guarantee that good common principal components of the two particular classes are also good for other pairs of classes. This method can be viewed as forming common principal components for all classes by simply grouping common principal components of pairs of classes. Reduction techniques based on heuristics are applied to reduce the number of dimensions in feature space. Consequently, these techniques cannot guarantee the above-mentioned idea of CSP. Seen from another different perspective by viewing the multi-class CSP methods in the light of the subspace method, as shown in an influential work [Ramoser et al., 2000], a subspace is formed for each class of data from the corresponding covariance matrix, then a union of these subspaces is performed to select a group of principal components based on some measure. This method is called the Union-based Common Principal Components (UCPC) in this research. However, the chosen principal components may have very little contribution from some data classes. In the JAD-based methods, as proven in work of Grosse-Wentrup [Grosse-Wentrup and Buss, 2008], these methods are equivalent to finding independent components. However, the ICA methods do not need prior information such as class labels. Later work attempted to incorporate prior information to improve classification accuracy. The reported results are different because the authors used different datasets, even so, it seems that JAD-based methods achieve better results than CSP-based methods. The method proposing in this research and discussed briefly later in this section, and, in more detail in the following sections, follows the idea of finding common independent components.

In the method used here, which is called Approximation-based Common Principal Components (ACPC) and is discussed later, after constructing subspaces derived from covariance matrices, a new subspace is approximated that resembles these subspaces and has the same number of dimensions. The principal angle between these
subspaces is used as the metric for the subspace approximation. The idea of forming an approximate subspace from these subspaces was based on the work of Krzanowski [Krzanowski, 1979] who used it when dealing with problem of heterogeneous covariance matrices. Extended works such as that of Fujioka et al. [Fujioka, 1993] and Rothman et al. [Rothman et al., 2009] were applied to analyzing the data with heterogeneous covariance matrices. Here it was different: the focus was on multi-class problems for the purpose of deriving the resembled subspace for feature extraction in multi-class BCI systems. Compared with joint approximate diagonalization methods [Flury, 1988], [Ziehe et al., 2004], the method proposed here, while sharing with them the idea of finding common principal components, is different in that it was not trying to diagonalize matrices through iteration methods. Also by taking into account of class information, this method is different from the conventional ICA method and hopefully can achieve better classification accuracy.

2.2.3 Feature extraction in subject-dependent and subject-independent BCI systems

Most of the above-mentioned recent work focuses on subject dependent BCI systems (SD-BCI) due to the high inter-subject and inter-session variability [Macaluso et al., 2007], [Toni et al., 1999]. In these SD-BCI systems, classifiers for each subject are trained individually. This process is time consuming and inconvenient, especially when the number of subjects increases. To deal with this challenge, researchers have targeted subject-independent BCI (SI-BCI) systems. Kreuledat et al. [Krauledat et al., 2008] proposed a method to reduce the time of calibration for new subjects arguing that, due to the high inter-subject and inter-session variability, it takes too much time for calibration when conducting BCI experiments. Therefore, based on spatial filters-classifiers learnt from past sessions of a subject, they eliminated the calibration recording time of new sessions of the same subject. Fazli et al. [Fazli et al., 2009] approached the problem of SI-BCI systems by constructing an ensemble of spatial filters and classifiers. They identified 9 temporal filters, and for each of these they built spatial filters and classifiers. The ensemble model was constructed based on these couples of spatial filters-classifiers. The authors implemented an L_1 regularized method to weight spatial filters and classifiers. For an experimental per-
2.3 Activation and delay issue in BCI experiments

Activation and delay is a well known issue [Macaluso et al., 2007], [Toni et al., 1999] in conducting experiments in BCI systems. It is an effect in which the times of stimulation and response, expected to be the same or nearly the same, are actually different. In theory, when receiving stimulation input, the brain needs time to process and then produce output. Macaluco et al. [Macaluso et al., 2007], in their work using fMRI in a delay paradigm, experimented with two sensory modalities: vision or touch; two motor effectors: eyes or hands; and two movements: left or right. They found that there are delay activations which are dependent on subjects and types of motor activity. Their work, however, mainly focused on estimating the delay, which is the start time point, but not the end time point which is essential for extracting the meaningful portion of the trial. The most well known example of the activation and delay issue is P_{300} control signal as shown in Table 2.2. In P_{300}-based experiments, when recorded by an EEG, the delay between stimulus and response is believed to be in order of from 250 milliseconds to 500 milliseconds [Polich, 2007]. In principle, if the delay between stimulus and response can be known precisely a meaningful brain signal can be extracted because stimulus time can be controlled. This is the reason
why P300-based BCI systems become preferred. Unfortunately, there are very few control signals which can be precisely estimated because of the delay between stimulus and response. To make this task more complicated, unlike other popular visual or audio signals such as speech or face to which human-beings can manually recognize and so quite accurately estimate the delay of the signal, brain signals are very difficult to control, read and interpret.

2.4 Functional Near Infrared Spectroscopy

Functional Near-Infrared Spectroscopy (fNIRS) is a method by which to detect changes in concentration of oxygenated and deoxygenated haemoglobin in blood. At the beginning, fNIRS was used for clinical research and neuroscience. Since fNIRS has advantages such as being non-invasive, having good spatial resolution, providing localized information, and having a high sensitivity in detecting small substance concentrations compared with other methods [Villringer et al., 1993], [Villringer and Obrig, 1996], the scope of studies has expanded to BCI systems [Yanagisawa et al., 2012], [Fazli et al., 2012], [Herff et al., 2012], [Strait et al., 2013]. Compared with fMRI, fNIRS is simpler, more portable and insensitive to motion artifacts; besides, it provides better spatial resolution than EEG signals. However, fNIRS has some disadvantages such as slow operation due to the inherent latency of the hemodynamic response, and weak signal due to hair on the head. Nevertheless, fNIRS’s ability to record localized brain activity with a spatial resolution in the order of one centimetre (depending on the probe geometry) provides a good means by which to measure a variety of motor and cognitive activities [Wolpaw et al., 2002], [Krepki et al., 2007].

In neuroscience, fNIRS is a technique used to measure cerebral functions by combining changes in oxygenated and deoxygenated haemoglobin with their timing and concrete events. Studies by Logothetis et al. [Logothetis et al., 2001] and, Arthurs and Boniface [Arthurs and Boniface, 2003] showed that there is a linear relationship between neural activity and hemodynamic response. To create cerebral activity, neurons need oxygen and other substances to generate energy and produce action potentials. Oxygen and other substances are sent to active neurons by a mechanism of blood perfusion via capillaries. Haemoglobin is used as a means of transporting oxy-
gen. When haemoglobin is transporting oxygen it is called oxyhaemoglobin (oxyHb). When it is releasing oxygen to meet functional activity’s needs for oxygen metabolism, it is called deoxyhaemoglobin (deoxyHb). There is an increase in regional cerebral blood flow and regional cerebral blood oxygenation when actions are taking place. Therefore, by measuring changes in regional cerebral blood flow and regional cerebral blood oxygenation, a high spatial resolution map of brain activity can be created. A cerebral region is considered active if its regional cerebral blood flow increases leading to a decrease in deoxyHb and an increase in oxyHb.

Based on optical properties in a near-infrared light range, an optics method is used to measure changes in oxyHb and deoxyHb. Basically, a light-emitting diode emits a ray of near-infrared light at the scalp with about three centimetres in depth. The light is then absorbed by oxyHb and deoxyHb and scattered by neuron tissue before being captured by a detector. The modified Beer-Lambert Law [Ingle and Crouch, 1988] is used to calculate the level of changes in concentration of oxyHb and deoxyHb. Measurements need to be performed at two different wavelengths at least, ranging from 650 to 950nm, to allow calculation of changes in oxyHb and deoxyHb.

2.5 Aggregate model related methods

2.5.1 Adaptive boosting method

The main idea of the boosting method is to form a strong classifier from several weak classifiers: weak classifiers are defined as classifiers that are slightly better than a random guess and much easier to build than strong ones [Kearns and Valiant, 1994]. Boosting has its rooting from the work of Valiant [Valiant, 1984]. Later on, Schapire [Schapire, 1990] proposed the provable boosting algorithm by a simple strategy of calling the weak classifier three times on three modified distributions. The first experiments using boosting method were conducted by Drucker et al. [Drucker et al., 1993]. They, however, reported that their boosting method had practical drawbacks. The breakthrough in boosting came when Freund and Schapire [Freund and Schapire, 1995] introduced adaptive boosting (AdaBoost). Unlike the original boosting method which simply sampled data and discarded data, the newly proposed AdaBoost set weights on the data. The weighting strategy was very simple: the more
complicated a training sample in classification, the more weight it received and vice versa. In their work, Freund and Schapire showed that AdaBoost had strong practical advantages over previous boosting algorithms. After that, more studies focusing on boosting method both in application and theory aspects were came out [Freund and Schapire, 1996], [Schapire and Freund, 2012]. For more detailed information about the boosting method and its variants, readers should go to the recent published book of Schapire and Freund [Schapire and Freund, 2012].

Let \(\{x_i, y_i\}, x_i \in \mathbb{R}^d, i = 1, \ldots, n \) be the training data set with two labels \(y_i \in \{-1, +1\} \). The goal of the learning algorithm is to find a strong classifier \(H : x \rightarrow \{-1, 1\} \) AdaBoost will repeat call a specific type of weak learning algorithm in \(\text{Time} \) times. In the mean time, it tries to maintain a set of weights or a distribution \(D_t \) over the training set, with \(t \) being the time index variable. Denote \(D_t(i) \) to be the weight of the \(i-th \) training sample of the distribution at time \(t \). The weighting strategy is very simple: the more complicated a training sample in classification, the more weight does it receives. With this distribution, complicated training samples will get more attention in building weak classifiers over time. Initially, all weights in \(D_1 \) are equally set to \(\frac{1}{n} \). At each time point \(t \), AdaBoost tries to build a weak classifier or weak learner \(h_t : x \rightarrow \{-1, 1\} \) based on the current distribution \(D_t \) and update the next distribution \(D_{t+1} \). The goodness of a weak classifier is defined by its error \(\epsilon_t \) in classifying the training dataset as shown in Eq. (2.48).

\[
\epsilon_t = \sum_{i: h_t(x_i) \neq y_i} D_t(i) \quad (2.48)
\]

The final classifier which is expected to be a strong classifier is a weighted combination of \(\text{Time} \) weak classifiers \(h_t \) as follows

\[
H(x) = \text{sign} \left(\sum_{t=1}^{\text{Time}} \alpha_t h_t(x) \right), \quad (2.49)
\]

where

\[
\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right). \quad (2.50)
\]

\(\alpha_t \) measures the importance that its corresponding weak classifier \(h_t \) contributes to the final classifier \(H \). As shown in Eq. (2.50), \(\alpha_t \) gets larger when the error of the weak classifier \(\epsilon_t \) get smaller and vice versa.
2.5 Aggregate model related methods

The above boosting model can be straightforwardly extended to handle multi-class problems where there are K class labels $y_i \in Y = \{1, 2, \ldots, K\}$. The final classifier and weak classifiers now have the form $H : x \rightarrow \{1, 2, \ldots, K\}$ and $h_t : x \rightarrow \{1, 2, \ldots, K\}$. Consequently, the final classifier is formed by selecting the class label that maximizes goodness when weak classifiers are combined. Eq. (2.51) shows the final classifier in multi-class problems.

$$H(x) = \arg\max_{y \in Y} \sum_{t : h_t(x) = y} \alpha_t$$

(2.51)

There are other variants of AdaBoost to deal with multi-class problems including AdaBoost.M2 [Freund and Schapire, 1996],[Freund and Schapire, 1997], and AdaBoost.MH [Schapire and Singer, 1999].

The main advantage of AdaBoost over other classification methods is that it can be viewed as a feature selector with a principled strategy. Therefore, it can be a good candidate when dealing with problems that have a large number of features such as is the case in BCI systems. Another advantage of AdaBoost is that it can be flexibly combined with any method for training or finding a weak classifier. Among them, decision tree, discriminant analysis and k-nearest neighbour are the most typical and popular methods [Freund and Schapire, 1996],[Schapire and Freund, 2012].

2.5.2 Decision tree learning

Decision tree learning is a popular method used in machine learning [Quinlan, 1993], [Murthy, 1998], [Kotsiantis, 2007]. Its goal is to build up a tree where inner nodes correspond to input values or features, and leaf nodes are output variables or class labels. There are a few successful decision tree learning algorithms so far including Iterative Dichotomiser 3 (ID3), Classification And Regression Tree (CART) and C4.5. Among them C4.5 is considered the most popular and successful one [Murthy, 1998], [Kotsiantis, 2007].

Let $\{x_i, y_i\}, x_i \in R^d, i = 1, \ldots, n$ be the training data set $TrainSet$ in which x_i is the feature vector and y_i is the class label of sample $i - th$. Assume that there are K class labels $y_i \in y = \{1, 2, \ldots, K\}$. At each node of the tree, C4.5 chooses a component of a feature vector meaning an attribute Att_j that can maximize the splitting of a
set of training samples into subjects in term of some discrimination measures. The C4.5 algorithm uses information gain IG as shown in Eq. (2.54) as its discrimination measure. Information gain $IG(Se, Att_j)$ is a measure of difference in entropy from before to after a splitting of a set of samples Se based on a specific attribute Att_j. Therefore, it can be considered as a measure of reduced uncertainty represented by entropy after a splitting based on a specific feature column.

\[
p(y, Se) = \frac{||x_i \in Se : y_i = y||}{||Se||} \tag{2.52}
\]

\[
Entroy(Se) = -\sum_{y \in Y} p(y, Se) \log_2 p(y, Se) \tag{2.53}
\]

\[
IG(Se, Att_j) = Entropy(Se) - \sum_{SSe_k} p(SSe_k) Entropy(SSe_k) \tag{2.54}
\]

where $Se \subseteq TrainSet$, y is a class label, Att_j is an attribute, SSe_k is a subset resulting from partitioning the set Se based on the attribute Att_j, and $p(SSe_k) = \frac{||SSe_k||}{||Se||}$.

C4.5 also employs a post-processing step called a pruning step to remove nodes in order to avoid the over-fitting issue. This step is the main difference between C4.5 and its precursor ID3. For more detail about decision tree learning, and specifically the C4.5 algorithm, readers are referred to works of Murthy [Murthy, 1998] and Kotsiantis [Kotsiantis, 2007]. In the research, decision tree learning was used for weak classifiers in the boosting model.
Chapter 3

Multi-class Brain-Computer Interface Systems and Baseline Methods

In this chapter, the research formulates Brain Computer Interface problems including the 2-class, multi-class, subject dependent, and subject independent problems. It also presents methods which will be compared with the research proposed methods in later chapters. These base-line methods include 2-class Common Spatial Patterns, multi-class Common Spatial Patterns, and Time Domain Parameters. While the first and the second methods are state-of-the-art ones in feature extraction in BCI, the third represents for single channel based feature extraction methods. As shown in this chapter, the CSP-based methods, in MBCI, can be called as Union-based Common Principal Components analysis. When dealing with multi-class BCI problems, the Union-based Common Principal Components analysis method has its own weakness.

3.1 Formulation of Brain-Computer Interface

Let $X_i \in \mathbb{R}^{K \times Time}$ be the i-th trial in a dataset $X = \{X_i\}$ of M trials. Let K be the number of channels and $Time$ be the number of sampled time points of a trial. Assume that all trials belonging to a dataset have the same number of sampled time points. A trial consists of K channels $x^k = (x^k_1, x^k_2, \ldots, x^k_{Time})$ where $k \in \{1, \ldots, K\}$ is
the channel index, \(t \in \{1, \ldots, Time\} \) is the sample index of the signal. To emphasize the time series property of a channel signal \(x^k(t) \) is used. The \(i \)-th trial belongs to a class \(Lab(X_i) \) of mental action or motor imagery. Assuming that there are \(N \) classes in the dataset, meaning \(Lab(X_i) \in \{1, \ldots, N\} \). The dataset is conducted by a set of subjects \(Sub = \{s\} \).

Usually the dataset \(X \) is divided into three separate sets: training set, validation set and test set. The training and validation sets are used to train a classifier. The class labels of the trials belonging to these two sets are previously known. The trained classifier is a determined function \(Classifier \) which receives a trial as an input and outputs a predicted class label. The research uses Support Vector Machines (SVM) as classifiers in all experiments.

If the cardinals of the set \(Lab \) equals 2, we have 2-class BCI (2BCI) systems. Otherwise, if the cardinals of the set \(Lab \) is greater than 2, we have multi-class BCI (MBCI) systems.

If the classifier is trained from the trials conducted by a specific subject, we have subject-dependent BCI (SD-BCI) systems. Otherwise, if the classifier is trained from the trials conducted by a set of subjects, we have subject-independent BCI (SI-BCI) systems.

Combining them together, BCI systems can be placed into into four categories: subject-dependent 2-class BCI (SD-2BCI) systems, subject-dependent multi-class BCI (SD-MBCI) systems, subject-independent 2-class BCI (SI-2BCI) systems, and subject-independent multi-class BCI (SI-MBCI) systems.

3.2 Common Spatial Patterns (CSP) analysis in 2-class BCI systems

Let \(Cov(X_i) = X_iX_i^T \) be the covariance matrix of trial \(X_i \) and \(C_n \) be the estimated covariance matrix of all trials belonging to the \(n \)-th class. An empirical method was used to estimate this covariance matrix.

\[
C_n = \frac{1}{|X_i|} \sum_{X_i:Lab(X_i)=n} Cov(X_i) = \sum_{X_i:Lab(X_i)=n} X_iX_i^T
\] (3.1)
3.2 Common Spatial Patterns (CSP) analysis in 2-class BCI systems

3.2.1 Two-class CSP

Given 2 covariance matrices C_1 and C_2 correspond to 2 classes of the dataset, CSP analysis aims to find a matrix V to simultaneously diagonalize these two matrices:

$$C_1 = V\lambda_1 V^T$$

(3.2)

$$C_2 = V\lambda_2 V^T$$

(3.3)

subject to

$$\lambda_1 + \lambda_2 = I$$

(3.4)

This problem is well known and its solution can be achieved by solving a generalized eigenvalue problem. The matrix V which consists of common generalized eigenvectors is called the spatial filters of the signal. Each eigenvector in V is a spatial filter and its associated eigenvalue is the variance of the projected signal. Due to its constraint in Eq. (3.4), if the variance of one class is the largest, the variance of the other class will be the smallest and vice versa. This property is, therefore, very useful in class discrimination. To avoid the over-fitting problem and reducing processing time, only several spatial filters are selected for classification. Blankertz et al. [Blankertz et al., 2008b] proposed using at most 6 spatial filters. They also noted that finding the matrix V was, in actual facts, to find the common basis of the two classes.

3.2.2 CSP-based feature extraction in BCI systems

The i-th trial of the original data X_i will then be mapped to become X_i^{CSP} in the new subspace as follows

$$X_i^{CSP} = V^T X_i.$$

(3.5)

The components z_k of a feature vector z are determined as follows

$$z_k = \log(y_k) \quad y_k = [\text{var}(X_i^{CSP})]_k$$

(3.6)

where $k = 1, \ldots, Q \times K$, Q is the number of selected components and is independent of the length of the trial, and K is the number of channels. The feature vector of
a trial as shown in Eq. (3.6) is formed by combining the variances of all channels from the mapped data. Because the variance of a filtered signal is equivalent to the signal’s band power, the feature vector is equivalent to the logarithmic band power. That the length of feature vectors is independent on the length of trials is very useful in allowing researchers to flexibly determine the length of the trials, especially in real time or online BCI systems.

3.3 CSP-based extensions for multi-class BCI systems

The main idea of CSP-based methods in dealing with a MBCI problem is to convert the multi-class problem into multiple 2-class problems, apply the 2-class CSP analysis to solve these problems, and then combine the 2-class problem solutions together to form the solution of the original MBCI problem. Based on that idea, there are two well-known strategies. The first is called one-versus-the-rest (CSP1 vs N). The second is called pairwise that considers all possible pairs of N classes (CSP pairs).

3.3.1 One-versus-the-Rest CSP

In this strategy, one class is selected and the $N - 1$ remaining classes are assumed to have very similar covariance matrices to form the other class. The 2-class CSP analysis is then applied to covariance matrix of the selected class and the estimated covariance matrix of the remaining $N - 1$ classes. There are N possible options to select a class, therefore, there are N 2-class problems that need to be solved. The final spatial filters are formed by a combination of selected spatial filters of these N 2-class problems. As a result, the length of the feature vectors of $CSP_1 vs N$ method in N-class BCI is $Q \times K \times N$ where Q is the number of the selected spatial filters. Let z^n be the feature vector solving the n-th problem in which class n is separated from other classes as shown in Eq. (3.6). The feature vector of $CSP_1 vs N$ is concatenated from N feature vectors as shown in Eq. 3.7.

$$z = (z^1, z^2, \ldots, z^N)$$ (3.7)
3.3.2 Pair-wise CSP

In this strategy, all the possible pairs of N classes are to be solved by applying a conventional 2-class CSP method, and there are total $\frac{N \times (N - 1)}{2}$ 2-class problems that need to be solved. Similarly to the CSP_{1vsN} strategy, the final spatial filters are a union of all selected spatial filters of the $\frac{N \times (N - 1)}{2}$ 2-class problems. Let $z^{i,j}$ be the feature vector solving the problem of the pair of class i and class j as shown in Eq. (3.6). The feature vector of CSP_{pairs} is concatenated from $\frac{N \times (N - 1)}{2}$ feature vectors as shown as in Eq. 3.8.

$$z = (z^{1,2}, \ldots, z^{1,N}, z^{2,3}, \ldots, z^{2,N}, \ldots, z^{N-1,N})$$ (3.8)

3.3.3 Union-based Common Principal Components

The two CSP-based methods have their own weakness. The first method CSP_{1vsN} assumes the covariance matrices of the remaining $N - 1$ classes are highly similar. However, it is hard to observe this assumption in real-world applications. While in the second method CSP_{pairs}, it cannot guarantee that good common principal components of two particular classes are also good for other pairs of classes. These two methods can be viewed as forming common principal components for all classes by simply grouping common principal components of pairs of classes or of N 1vsN problems. A reduction technique based on heuristics is then applied to reduce the number of dimensions in feature space. Consequently, these two methods cannot guarantee the original idea of CSP. From another different perspective, taking multi-class CSP-based methods under light of subspace method view as shown in an influential work [Ramoser et al., 2000], a subspace is formed for each class data from the corresponding covariance matrix, then a union of these subspaces is performed to select a group of principal components based of some measure. These method Union-based Common Principal Components (UCPC) were named in the research.

3.4 Time Domain Parameters

Time Domain Parameters include three parameters measuring the activity, the mobility and the complexity of a signal. Being different from the CSP method, these
three parameters are measured by individual channels. Given the channel \(k \)-th \(x^k(t) \), the three parameters are defined as follows.

\[
\text{Activity}(x^k(t)) = \text{VAR}(x^k(t)) = \frac{1}{\text{Time} - 1} \sum_{i=1}^{\text{Time}} (x^k(t) - \bar{x}^k)^2 \quad (3.9)
\]

\[
\text{Mobility}(x^k(t)) = \sqrt{\frac{\text{Activity}(\frac{dx^k(t)}{dt})}{\text{Activity}(x^k(t))}} \quad (3.10)
\]

\[
\text{Complexity}(x^k(t)) = \frac{\text{Mobility}(\frac{dx^k(t)}{dt})}{\text{Mobility}(x^k(t))} \quad (3.11)
\]

where \(\text{VAR}(x^k(t)) \) is the variance of the signal \(x^k(t) \), and \(\bar{x}^k \) is its mean.

In the signal processing field, the mobility and the complexity are very good for describing the properties of the signal. These three measures are often called Hjorth parameters of the signal.

Mobility and complexity were extracted for each channel of a trial. Feature vectors of the trial were then formed by concatenating the mobility or complexity of all of its channels. Mobility feature (MF) as in Eq. (3.12) and complexity feature (CF) as in Eq. (3.13) were used as baseline methods representing the single channel based feature extraction methods in BCI.

\[
z = (\text{Mobility}(x^1(t)), \text{Mobility}(x^2(t)), \ldots, \text{Mobility}(x^K(t))) \quad (3.12)
\]

\[
z = (\text{Complexity}(x^1(t)), \text{Complexity}(x^2(t)), \ldots, \text{Complexity}(x^K(t))) \quad (3.13)
\]

It is easy to see that lengths of CF and MF are equal to the number of channels used in experiments.

3.4.1 Relationship between Time Domain Parameters and other spectral power based features

Assuming that the original signal \(x^k(t) \) is normalised by its mean. The parameter \(\text{Activity} \) of the signal can be defined in a simpler way as the power index.

\[
\text{Activity}(x^k(t)) = \frac{1}{\text{Time}} \sum_{i=1}^{\text{Time}} x^k(t)^2 \quad (3.14)
\]
The other two parameters are still the same as seen in equations (2.7) and (2.8) which are based on the parameter Activity. According to Parseval’s theorem, the sum of square of a function in the time domain is equal to the sum of square of its Fourier transform in the frequency domain. It means that

\[\sum_{1}^{Time} x^k(t)^2 = \sum_{1}^{Time} |F_{x^k(t)}|^2 \]

Therefore,

\[Activity(x^k(t)) = \frac{1}{Time} \sum_{1}^{Time} x^k(t)^2 = \sum_{1}^{Time} |F_{x^k(t)}|^2 \]

where \(|F_{x^k(t)}|^2 \) is called the spectral powers of the signal \(x^k(t) \) in the frequency domain. Moreover, Navascues and Sebastian [Navascus and Sebastin, 2009] proved that the derivatives of a signal can be represented by its spectral powers in the frequency domain. As a result, both parameters Mobility and Complexity of the signal \(x^k(t) \) can be calculated based on the signal’s spectral powers. In short, the all three time domain parameters can be derived from the spectral powers of the same signal in frequency domain.
Chapter 4

Common Principal Component Analysis for Multi-Class Brain-Computer Interface Systems

This chapter presents the theoretical foundation of two proposed feature extraction methods based on Approximation-based Common Principal Components (ACPC) analysis. As shown in Chapter 3, the feature extraction methods based on 2-class CSP can be called Union-based Common Principal Components (UCPC) methods. The two proposed ACPC methods were shown that they could overcome disadvantages of the UCPC methods. The first ACPC method was based on conducting multiple simultaneous Jacobian rotations. The second ACPC method was based on approximating the original subspaces by a unified subspace. The research proved that the first method when combines with appropriate Entropy-based ranking can be considered as an extension of the conventional 2-class CSP to multi-class BCI problems. Experimental methods and results of the proposed ACPCs are discussed in the following chapter.
4.1 Jacobian-based Approximation-based Common Principal Components

4.1.1 Jacobian-based algorithm for finding Common Principal Components

Given a set of \(N \) symmetrical real matrices \(C_1, C_2, ..., C_N \) of size \(K \times K \). The Jacobian-based Approximation-based Common Principal Components (Jacobi-ACPC) method tries to jointly diagonalize all these \(N \) matrices to find a matrix of eigenvectors \(V \) and eigenvalues \(\lambda_i \) that satisfy

\[
C_i = V \lambda_i V^T
\]

for all \(C_i \) with \(i \in [1, N] \). It is easy to see that all matrices \(C_i \) share the same matrix of eigenvectors \(V \) while they are different in their associated eigenvalues. Eigenvectors in \(V \) are called common principal components of the set of \(N \) real matrices. The eigenvalues can be further restricted by

\[
\sum_{i=1}^{N} \lambda_i = I.
\]

This can be done by the whitening transformation. This restriction could be used to select the most discriminative principal components for a data class.

Unfortunately, the exact solution for the joint diagonalization problem cannot be found. Instead, an approximated solution is attempted. In the new approximated problem, \(V \) forms an orthogonal vector subspace that tries to diagonalize all given matrices \(C_i \) and achieves the predefined optimal criteria. A typical criterion is minimizing the Frobenius norm (as in Eq. 4.5) of the off-diagonal elements in the resulted matrices. Eqs. (4.1) and (4.2) could be rewritten as follows

\[
C_i = V \text{diag}(\lambda_i)V^T
\]

\[
\sum_{i=1}^{N} \lambda_i = I
\]

\[
S_i^t = \sum_{p \neq q} C_i^t(p, q)
\]
where $C_i^t(p, q)$ denotes the element or cell at row p^{th} and column q^{th} of the matrix C_i^t and $\text{diag}(.)$ is an operator to return the diagonal elements of a squared matrix.

A Jacobi-based method was proposed to find the common principal components of the set of N matrices. Its main advantage is that it is very easy to be implemented in the parallel computation which can be very efficient in real-world applications. Moreover, the Jacobi-based algorithm naturally achieves orthogonal property from principal components which is focused in this paper.

The main idea of the Jacobi algorithm is that it employs a series of orthogonal similarity transformations on a given symmetrical matrix. Each transformation tries to eliminate an off-diagonal element by applying the suitable plane rotation identified by a basic Jacobi plane rotation $R(p, q, \theta)$ as seen in Eq. (4.6):

$$R(p, q, \theta) = \begin{pmatrix} p & q \\ q & -p \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

(4.6)

$R(p, q, \theta)$ is a matrix that has four meaningful elements $\cos \theta, -\sin \theta, \cos \theta,$ and $\sin \theta$ at cell $(p, p), (p, q), (q, q),$ and (q, p), respectively. All the other elements are 1 if they are diagonal and 0 if they are off-diagonal. It is easy to see that $R(p, q, \theta)$ is an orthogonal matrix. Given a symmetrical matrix C that needs to be diagonalized, with the appropriate chosen angle θ, the Jacobi algorithm can transform the value of elements (p, q) and (q, p) to 0 in the transformed matrix C due to its symmetrical property as in Eq. (4.7).

$$C^{t+1} = R(p, q, \theta)^T C^t R(p, q, \theta)$$

(4.7)

where C^t represents the matrix after t times of transformation and initially $C^0 = C$.

Naturally, the above Jacobi algorithm can be extended to jointly diagonalize N symmetrical matrices C_1, C_2, \ldots, C_N at the same time. However, instead of eliminating all off-diagonal elements, an attempted was made to minimize the sum of squares of them of all transformed matrices (Eq. (4.9)). With an appropriately chosen angle θ_i, Eq. (4.7) can be rewritten as follows

$$C_i^{t+1} = R(p, q, \theta_i)^T C_i^t R(p, q, \theta_i)$$

(4.8)

$$S^t = \sum_{i=1}^{K} S_i^t$$

(4.9)
where \(C_i^t\) represents the matrix \(C_i\) and \(S^t\) represents the sum of square of off-diagonal elements of all \(N\) matrices after \(t\) times of transformation; \(C_i^0 = C_i\).

After each transformation, the value of \(S^t\) decreases due to some off-diagonal elements being reduced. Because \(S^t \geq 0\), at a certain time point, it will converge. The stopping criterion was monitored by comparing the value of \(S^{t+1}\) to that of \(S^t\). If the difference between them was sufficiently small, the algorithm was terminated and the current matrices \(C_i^{stop}\) were accepted as an approximated solution. The product of the sequence of transformations was an approximated common principal components of \(N\) matrices and \(\text{diag}(C_i^{stop})\) contained their approximated eigenvalues.

The following lemmas give the theoretical foundation to the Jacobian-based ACPC method.

Lemma 1. Given a real symmetrical matrix \(C_i^t\) and a basic Jacobi rotation matrix \(R(p, q, \theta_i)\), with the appropriate value of \(\theta\), the sum of non-diagonal elements \(S^t\) can be reduced by \(2 \times |C_i^t(p, q)|^2\). It means that

\[
S_i^{t+1} = S_i^t - 2 \times |C_i^t(p, q)|^2
\]

(4.10)

Proof. This is a well known lemma. See Appendix 1 for detailed proof.

Lemma 2. Given a set of \(N\) real symmetrical matrices \(C_i^t\) and a basic Jacobi rotation matrix \(R(p, q, \theta_i)\), with the appropriate value of \(\theta_i\), the sum of non-diagonal elements \(S^t\) can be reduced by \(\sum_{i=1}^{N} 2 \times |C_i^t(p, q)|^2\). It means that

\[
S^{t+1} = S^t - \sum_{i=1}^{N} 2 \times |C_i^t(p, q)|^2
\]

(4.11)

Proof. This comes directly from the definition of \(S_i\) as in Eq. (4.9) and Lemma (1).

4.1.2 Ranking Common Principal Components and the relationship between Common Principal Components and 2-class Common Spatial Patterns

Assuming that there were common principal components \(V \in R^{K \times K}\) and their associated approximated eigenvalues of \(N\) classes \(E \in R^{K \times N}\). A method based on the
entropy measurement was proposed to rank the common principal components called Entropy-based Ranking (ER). Its idea comes from an observation that a common principal component is the most discriminative if the variances of the classes mapped along this component are the most discriminative. Moreover, due to the fact that the constraint of the sum of eigenvalues equals 1 in Eq. (4.2), if a variance of a class increases, the variances of others have to decrease. In other words, a common principal component is the most discriminate if the entropy of the variances of classes along it is the smallest and vice versa. Eq. (4.12) shows the formula to calculate the entropy of a principal p.

$$Entropy_p = - \sum_{i=1}^{N} E_{p,i} \log E_{p,i}$$ \hspace{1cm} (4.12)

It is seen that by applying the Entropy-based Ranking method to 2-class BCIs, the first and the last common spatial patterns of CSP, which maximize (minimize) the variance of one class while minimizing (maximizing) the other, will be chosen. That is what 2-class CSP-based algorithm usually does. Basing on this, the proposed method based on the Common Principal Components is an extension of the Common Spatial Patterns to deal with multi-class BCI problems.

4.1.3 Feature extraction based on Jacobian-based Common Principal Components

The covariance matrices C_n of all classes from the training dataset were computed as in Eq. (2.18). On these N symmetrical real matrices, the above Jacobi algorithm was applied. The result was common principal components $V \in R^{K \times K}$. The ranking algorithm was then run to get Q most discriminating components.

The original data X_i of the i-th trial was then mapped to become X_i^{CSP} in the new subspace as follows

$$X_i^{CPC} = V^T X_i.$$ \hspace{1cm} (4.13)

The components z_k of a feature vector z were determined as follows

$$z_k = \log(y_k), \quad y_k = [var(X_i^{CPC})]_k$$ \hspace{1cm} (4.14)
where \(k = 1, \ldots, Q \times K \), \(Q \) is the number of the selected components and is independent of the length of the trial, and \(K \) is the number of channels. The feature vector of a trial as shown in Eq. (4.14) was formed by combining variances of all channels from the mapped data. It can be seen that the length of feature vectors is independent on the length of the trials.

Algorithm 1 shows the pseudo code of the algorithm in finding common principal components by using Jacobian method.

Data: set of \(N \) real symmetrical matrices \(C_i \) size \(K \times K \)

Result: common principal components \(V \) and their accompanied eigenvalues \(E \)

Step 1: start a sweep of pairs \((p, q)\) of all matrices. Set \(V=I \);

Step 2: **foreach pair \((p, q)\) of current sweep do**
 - Choose appropriate angle \(\theta_i \) for each matrix \(C_i \);
 - Build matrix \(R(p, q, \theta_i) \);
 - Rotate all \(C_i \) matrices by \(R(p, q, \theta_i) \);
 - \(C_i = R(p, q, \theta_i)^T C_i R(p, q, \theta_i) \);
 - \(V = VR(p, q, \theta) \);

end

Step 3: calculate the sum of square of off-diagonal elements of all matrices \(C_i \);

Step 4: check the stop criteria, if not satisfied repeat step 1 for another new sweep;

Step 5: return common principal components \(V \) and \(\text{diag}(C_i) \);

Algorithm 1: Jacobi_ACPC: Jacobian-based method for finding common principal components
4.2 2PCA Approximation-based Common Principal Components

4.2.1 2PCA Approximation-based Common Principal Components

Given a set of N symmetrical real matrices C_1, C_2, \ldots, C_N size of $k \times k$. Instead of jointly diagonalizing the set of matrices, the 2PCA Approximation-based Common Principal Components ($2PCA_{ACPC}$) method tries to diagonalize these N matrices separately, resulting in the set of eigenvectors V_i and eigenvalues λ_i satisfying

$$C_i = V_i \lambda_i V_i^T$$

for all matrices C_i with $i \in [1, N]$ in which V_i is a $K \times K$ matrix whose rows represent the principal components for the corresponding coordinate. It can be seen that these problems are identical to conducting the N principal component analysis (PCA) separately on N matrices C_i. According to the theory of principal component analysis, when mapping data on to new coordinates, at first several principal components are enough for representing the variance of the original data. Let P be the number of selected principal components forming the new subspaces for all V_i. Let L_i sized $P \times K$ be the matrix representing P principal components taken from V_i. A new subspace H which resembles all subspaces spanned by the set of eigenvectors L_i was sought. The approach proposed by Krzanowski [Krzanowski, 1979] using the sum of principal angles between new subspace H and other original subspaces was used here.

Let h be an arbitrary vector in the original K-dimensional data space. Let $\theta_i \in [0, \frac{\pi}{2}]$ be the angle between vector h and the vector which is most nearly parallel to it in the space spanned by L_i. The Δ function was defined as follows

$$\Delta = \sum_{i=1}^{N} \cos^2 \theta_i$$

(4.16)

Lemma 3. Let h be an arbitrary vector in the original K-dimensional data space. Let θ_i be the angle between vector h and the vector most nearly parallel to it in the space spanned by L_i. Then we have

$$\cos \theta_i = \frac{h^T L_i^T L_i h}{\|h\|}$$

(4.17)
4.2 2PCA Approximation-based Common Principal Components

Proof. It can be seen that by the definition, the angle θ_i is the angle between vector h and its project on the subspace spanned by L_i. Let p be the project of h on subspace spanned by L_i. Due to the fact that L_i is the basic of the subspace the vector p can be rewritten as

$$p = L_i^T x$$

(4.18)

The projected vector of h on the subspace perpendicular to subspace spanned by L_i is $h - L_i^T x$. Therefore,

$$L_i(h - L_i^T x) = 0$$

(4.19)

$$L_i h - L_i L_i^T x = 0$$

(4.20)

$$x = (L_i L_i^T)^{-1} L_i h$$

(4.21)

Substitute (4.21) to (4.18), we have

$$p = L_i^T (L_i L_i^T)^{-1} L_i h$$

(4.22)

The orthogonality of L_i gives us

$$p = L_i^T L_i h$$

(4.23)

The cosine of angle between the two vectors by definition is

$$\cos(\theta_i) = \frac{h^T L_i^T L_i h}{\|h^T\| \|L_i^T L_i h\|}$$

(4.24)

Rewriting the norm of vector in dot product operator leads to

$$\|L_i^T L_i h\| = \sqrt{(L_i^T L_i h)^T (L_i^T L_i h)}$$

(4.25)

$$= \sqrt{h^T L_i^T L_i L_i^T L_i h}$$

(4.26)

$$= \sqrt{h^T L_i^T L_i h}$$

(4.27)

Substitute (4.27) to (4.24), (4.17) is achieved. The theorem is proven.

Lemma 4. Let h be an arbitrary vector in the original K-dimensional data space. Let θ_i be the angle between vector h and the vector most nearly parallel to it in the space spanned by L_i. Then the value of h is given by the eigenvector h_1 corresponding to the largest eigenvalue λ_1 of the matrix $L = \sum L_i^T L_i$ will maximize the value of Δ.

\qed
4.2 2PCA Approximation-based Common Principal Components

Proof. According to Lemma (3), we have

\[\Delta = \sum_{i=1}^{N} \cos^2 \theta_i = \frac{h^T L_i^T L_i h}{\|h\|^2} \tag{4.28}\]

\[= \frac{h^T \sum_{i=1}^{N} (L_i^T L_i) h}{h^T h} \tag{4.29}\]

\[= \frac{h^T L h}{h^T h} \tag{4.30}\]

The original optimal problem of finding arbitrary vector \(h\) that \(\max_{\|h\|=1} h^T L h\) is then converted to the simpler optimal problem of finding normal vector \(h\) that \(\max_{\|h\|=1} h^T L h\). Let \(V\) be the matrix used for diagonalizing matrix \(L\) as follows

\[L = V D V^T \tag{4.31}\]

in which

\[D = diag(\lambda_1, \lambda_2, \ldots, \lambda_n) \tag{4.32}\]

and

\[\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \tag{4.33}\]

It will be proved that \(\sup_{\|h\|=1} h^T L \leq \lambda_1\). Let \(y = V^T h\). That \(\|h\| = 1\) leads to \(\|y\| = 1\). Then \(\max_{\|y\|=1} h^T L h = \max_{\|y\|=1} y^T D y = \max_{\|y\|=\sum_{i=1}^{K} \lambda_i \|y_i\|^2} \leq \max_{\|y\|=1} \sum_{i=1}^{K} \lambda_i \|y_i\|^2 = \lambda_1\). The equality happens only when vector \(h\) is \(h_1\) which is an eigenvector of the unit norm associated with the largest eigenvalue \(\lambda_1\). The theorem is proven. \(\square\)

Applying the Gram-Schmidt method, it is seen that the eigenvector \(h_2\) associated to the second largest eigenvalue of matrix \(D\) will be orthogonal to vector \(h_1\), which leads to the second largest value of \(\Delta\). Similarly, the remaining \(K\) vectors \(h_i\) which will span the new subspace \(H\) was formed. Moreover, it can be seen that finding the new subspace \(H\) is actually to conduct another Principal Component Analysis on the matrix \(L\). Therefore \(Q\) components from \(K\) components of subspace \(H\) can then be selected, which are enough to represent all data points.

Algorithm 2 shows the pseudo code of the algorithm in finding common principal components by using two times of principal component analysis.
4.2 2PCA Approximation-based Common Principal Components

Data: set of N real symmetrical matrices C_i size $K \times K$

Result: common principal components V and their accompanied eigenvalues E

1. **Step 1:** For each matrix C_i, do Principal Component Analysis on $C_i = V_i \lambda_i V_i^T$
2. **Step 2:** For each V_i, select k_i components from n components of V_i whose sum of eigenvalues exceeds 90% of total eigenvalue.
3. **Step 3:** Set $k = \max k_i$
4. **Step 4:** Set $L = \sum_i^n (L_i^T L_i)$
5. **Step 5:** Do Principal Component Analysis on $L = H \lambda H^T$
6. **Step 6:** Select Q components from K components of H
7. **Step 7:** Return Q selected components of H and their corresponding eigenvalues.

Algorithm 2: 2PCA_ACPC: 2PCA-based method for finding common principal components

4.2.2 Feature extraction based on 2PCA Approximation-based Common Principal Component analysis

The covariance matrices C_n of all classes from the training dataset were computed as in Eq. (2.18). From these covariance matrices, common principal components V of data were derived by applying the above-described algorithm 2PCA_ACPC. The original data were then mapped on the new subspace as shown in Eq. (4.34).

$$X_i^{CPC} = V^T X_i$$ \hspace{1cm} (4.34)

The components z_k of a feature vector z are determined as follows

$$z_k = \log(y_k) \quad y_k = [\text{var}(X_i^{CPC})]_k$$ \hspace{1cm} (4.35)

where $k = 1, \ldots, Q \times K$, Q is the number of the selected components and is independent of the length of the trial, and K is the number of channels. The feature vector of a trial as shown in Eq. (4.35) was formed by combining variances of all channels from the mapped data. It can be seen that the length of feature vectors is independent on the length of the trials. This property is useful in allowing researchers to flexibly determine the length of trials, especially in real time or online BCI systems.
Due to the orthogonal property of new subspace, data on common principal components are de-correlated. Moreover, eigenvalues represent the variance degree of corresponding principal components. The feature vector of a trial as shown in Eq. (4.35) was formed by combining the variances of all channels from the mapped data. To remove the nonlinear property of variances, logarithm function was then applied.
Chapter 5

Experiments with Approximation-based Common Principal Component Analysis

This chapter presents the experiments undertaken with ACPC methods proposed in the previous chapter. The dataset 2a of the BCI competition IV was used in the experiments. The chapter starts with the description of the dataset used in the experiments. It then follows with experimental methods and results. Using the popular dataset in MBCI systems, it was proven that the proposed ACPC methods enhanced the performance of the MBCI system. The last section contains discussions about the experimental results and the effects of the relevant parameters on the classification accuracy.

5.1 Dataset used in experiments

The Dataset 2a from the BCI Competition IV [Brunner et al., 2008], which is a well-known dataset for multi-class BCI systems, is chosen for conducting experiments. The dataset was acquired by Graz University of Technology, Austria using Electroencephalography (EEG) technology with 22 channels at sampling frequency 250Hz. It was then bandpass-filtered with the low and high cut-off frequencies at 0.5Hz and 100Hz, respectively. Another 50Hz notch filter was also applied to eliminate power
5.1 Dataset used in experiments

line noise. Nine subjects were asked to perform four classes of motor imagery tasks to move cursor left, right, down or up corresponding with the imagination of movement of the left hand, right hand, both feet and tongue. Each subject participated in two sessions in different days. In each session, there were six runs separated by short breaks in between. There were forty eight trials in each run which were equally distributed for all the four classes. In total, there were 288 per sessions and 576 trials per subject. For each trial, there were two seconds to help the participants prepare themselves. After that, there was a cue appearing and staying on screen in 1.25s. The subjects were asked to carry out motor imagery tasks until the 6th second. The paradigm of getting this dataset is illustrated in Fig. 5.1. Fig. 5.2 shows the positions of electrode used in the experiment corresponding to the standard 10-20 international system. Distance between two neighbour electrodes is 3.5 centimetres.

Figure 5.1: Timing scheme of a run used in getting the dataset 2a of the BCI Competition IV (extracted from [Brunner et al., 2008])

The dataset was used in the BCI Competition IV in 2008 and became a standard dataset for multi-class BCI systems. In the competition, trials conducted by a subject were equally divided into training and testing sets. The competitors were asked to continuously assign labels to segments extracted from unknown trials. The winner was the one who could achieve the largest kappa coefficient [Schlögl et al., 2007] corresponding to the highest accuracy at any time point. In the research’s experiments, accuracy was used as the measurement, leading to the conversion of the results in the competition [Brunner et al., 2008] which is reported by Kappa coefficient to the classification accuracy using the equation \(\text{accuracy} = \frac{N \times \kappa - \kappa + 1}{N} \) proposed in [Schlögl et al., 2007], wherein \(N = 4 \) and \(\kappa \) is the Kappa coefficient. Table 5.1 shows the results of five participants in the competition on the dataset 2a. It is noted that while
Figure 5.2: The electrode positions corresponding to the 10-20 international system used in getting the dataset 2a of the BCI Competition IV (extracted from [Brunner et al., 2008])
5.2 Experiment methods and validations

Table 5.1: The classification results (accuracy in percentage) on Dataset 2a of nine subjects of the participating competitors in the BCI Competition IV [BCI, 2008]. The results were converted from Kappa coefficient to accuracy measure (in percentage) and rounded to the nearest integer values.

<table>
<thead>
<tr>
<th>Author</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kai Keng Ang</td>
<td>76</td>
<td>57</td>
<td>81</td>
<td>61</td>
<td>55</td>
<td>45</td>
<td>83</td>
<td>81</td>
<td>71</td>
</tr>
<tr>
<td>Liu Guangquan</td>
<td>77</td>
<td>51</td>
<td>78</td>
<td>58</td>
<td>37</td>
<td>41</td>
<td>75</td>
<td>80</td>
<td>77</td>
</tr>
<tr>
<td>Wei Song</td>
<td>54</td>
<td>39</td>
<td>61</td>
<td>50</td>
<td>30</td>
<td>36</td>
<td>47</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>Damien Coyle</td>
<td>60</td>
<td>44</td>
<td>74</td>
<td>48</td>
<td>34</td>
<td>30</td>
<td>25</td>
<td>60</td>
<td>57</td>
</tr>
<tr>
<td>Jin Wu</td>
<td>56</td>
<td>38</td>
<td>54</td>
<td>44</td>
<td>30</td>
<td>37</td>
<td>51</td>
<td>59</td>
<td>53</td>
</tr>
</tbody>
</table>

using the dataset and its protocol in following experiments, the research’s purpose was not to compete with other competitors in the competition. Instead, the dataset was used to illustrate and test the proposed methods with the current state-of-the-art methods which are based on CSP analysis.

5.2 Experiment methods and validations

The main purpose is to compare the proposed ACPC methods, *Jacobi*_ACPC and \(2\text{PCA}_\text{ACPC}\) in multi-class BCI systems with two other popular \(CSP\)-based methods (\(CSP_\text{1vsN}\) and \(CSP_\text{pairs}\)) and with another method based on individual channel \(TDP\). These base-line methods are presented in Chapter 3. The Dataset 2a from BCI Competition IV [BCI, 2008] which is described above was used for conducting experiments.

As in the competition, data was segmented into lengths of 2 seconds from the time point 2.5 second. Segment window was moved by one half of a second time frame. All these segments were bandpass filtered with the frequency cut-off at 8Hz and 30Hz before being extracted features depending on the methods used. Support Vector Machine (SVM) and its popular kernel function RBF \(K(x, x') = e^{-\gamma \|x-x'\|^2}\), a state of the art method for classifying in BCI systems [Lotte et al., 2007], was chosen
5.3 Experimental results

to classify data. Grid search was applied to get the optimal classifiers. The parameter γ was searched in the range $\{2^k : k = -10, -9, \ldots, 19, 20\}$. The trade-off parameter C was searched over the grid $\{2^k : k = 0, 1, \ldots, 12, 13\}$.

To evaluate the accuracy of classification on the dataset, the segmented data was divided into training and testing data sets by ratio of 8:2. The testing data was normalized basing on the distribution parameters extracted from the training data set. A 5-fold cross validation test was performed on the training data to find the optimal parameters γ and C. These optimal parameters were then used to build classifiers for the entire training dataset. Finally, the classifiers were applied on the testing dataset to get the accuracy results. To reduce randomness due to the division of data into the training and testing sets, this process was run five times. The reported accuracy results were calculated by taking the average of the accuracies of the results for five runs.

5.3 Experimental results

Two main experiments were conducted. In the first experiment, the research’s purpose was to compare the proposed methods $\textit{Jacobi_ACPC}$ and $\textit{2PCA_ACPC}$ with CSP-based methods including $\textit{CSP_1vsN}$ and $\textit{CSP_pairs}$ on the chosen dataset. In the second experiment, multi-channel based feature extraction methods were compared with a typical single channel based feature extraction method named Time Domain Parameters. Several other experiments were conducted to see the effects of selected parameters on performance of $\textit{Jacobi_ACPC}$ and $\textit{2PCA_ACPC}$ and visualization. Although it was not aimed to compare with participants of the BCI Competition IV on the same dataset, results of the proposed ACPC methods and theirs were briefly analyzed. These experiments and their results are presented in section 5.4.

In the two main experiments, seventeen components which contribute about 80% of the sum of eigenvalues of all components for $\textit{2PCA_ACPC}$ were selected. To make it comparable with $\textit{2PCA_ACPC}$, sixteen components for $\textit{Jacobi_ACPC}$ were selected. For the other CSP-based methods, as in other work, two components were selected for each class for each CSP problem. Therefore, for the one-versus-the-rest CSP, its feature vector has size $4 \times 2 \times n = 8 \times n$ while for the pair-wise CSP, its
5.3 Experimental results

Table 5.2: Comparison of $ACPC$ with CSP_{1vsN} and CSP_{pairs} methods (in percentage). The bold numbers are the best result of the corresponding subject. Numbers of selected components for corresponding methods are $Jacobi_{ACPC}$:16, $2PCA_{ACPC}$:17, CSP_{1vsN}:8 and CSP_{pairs}:24. The results are rounded to the nearest integer values.

<table>
<thead>
<tr>
<th>Method</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Jacobi_{ACPC}$</td>
<td>66</td>
<td>46</td>
<td>66</td>
<td>48</td>
<td>41</td>
<td>43</td>
<td>54</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td>$2PCA_{ACPC}$</td>
<td>79</td>
<td>53</td>
<td>79</td>
<td>53</td>
<td>46</td>
<td>48</td>
<td>72</td>
<td>76</td>
<td>70</td>
</tr>
<tr>
<td>CSP_{1vsN}</td>
<td>73</td>
<td>48</td>
<td>77</td>
<td>50</td>
<td>36</td>
<td>40</td>
<td>75</td>
<td>76</td>
<td>69</td>
</tr>
<tr>
<td>CSP_{pairs}</td>
<td>71</td>
<td>46</td>
<td>78</td>
<td>46</td>
<td>36</td>
<td>40</td>
<td>77</td>
<td>76</td>
<td>70</td>
</tr>
</tbody>
</table>

feature vector has size $6 \times 4 \times n = 24 \times n$ (6 is the number of CSP problems in this pair-wise strategy.)

5.3.1 Comparison with CSP_{1vsN} and CSP_{pairs} methods

Table 5.2 shows the results of $ACPC$ methods comparing with CSP-based methods. It can be seen that while $Jacobi_{ACPC}$ does not perform well in comparison with the CSP_{1vsN} and CSP_{pairs} methods, the $2PCA_{ACPC}$ method achieves better classification results than the two CSP-based methods in eight out of nine subjects. The only exception is at subject 7 where CSP_{1vsN} and CSP_{pairs} are better than $2PCA_{ACPC}$. The classification accuracy improvement ranges from 1% to 10% depending on the subject. Overall, $2PCA_{ACPC}$ improves about 3.5% in comparison with CSP_{1vsN} and about 4.1% in comparison with CSP_{pairs} in average over all nine subjects participating in the experiment. Another finding is that results of CSP_{1vsN} and CSP_{pairs} methods are highly similar. Fig. (5.3) shows this clearly. The cross symbols are nearly overlapped with the triangle symbols for most subjects. The only exception is for subject 4 where the accuracy difference is about 4%. The reason can be that both methods use 2-class CSP as their cores. Therefore, the differences between them are very small in MBCI systems. These results can be confirmed by taking average of classification accuracy over all nine
5.3 Experimental results

It can be seen from Fig. 5.4 that 2PCA_ACPC outperforms all three other methods while the two CSP-based methods CSP_1vsN and CSP_pairs are nearly equal.

![Comparison between CSP based methods](image)

Figure 5.3: Comparison between CSP_1vsN and CSP_pairs methods.

5.3.2 Comparison with Time Domain Parameters method

This experiment was to compare the ACPC methods which are based on multi-channel information for extracting features with the Time Domain Parameters (TDP) method which is a typical feature extraction method based on single channel information. Specifically, features extraction by Jacobi_ACPC and 2PCA_ACPC was compared with the mobility and complexity measure extracted from time domain of the signal. Table 5.3 shows these experimental results.

It is evident that the features obtained from both ACPC methods significantly outperform the two time domain features Mobility and Complexity for all subjects. The classification accuracy improvement ranges from 11% to 23% for 2PCA_ACPC and from 3% to 10% for Jacobi_ACPC depending on the subject. Overall, 2PCA_ACPC improves about 16.6% and Jacobi_ACPC improves about 6.9% on average in comparison with TDP features over all nine subjects participating in the experiment. The results as separately shown in Fig. 5.5 also show that both Mobility and Complexity achieve very similar results in this 4-class BCI system. It can be explained by the
5.3 Experimental results

Figure 5.4: Ranking of ACPC and CSP methods based on classification accuracy average over all nine subjects.

Table 5.3: Comparison of ACPC with Time Domain Parameters feature (in percentage). The bold numbers are the best result of the corresponding subject. The number of selected components for the corresponding methods are Jacobi_ACPC:16 and 2PCA_ACPC:17. The results are rounded to the nearest integer values.

<table>
<thead>
<tr>
<th>Method</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobi_ACPC</td>
<td>66</td>
<td>46</td>
<td>66</td>
<td>48</td>
<td>41</td>
<td>43</td>
<td>54</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td>2PCA_ACPC</td>
<td>79</td>
<td>53</td>
<td>79</td>
<td>53</td>
<td>46</td>
<td>48</td>
<td>72</td>
<td>76</td>
<td>70</td>
</tr>
<tr>
<td>Mobility</td>
<td>56</td>
<td>39</td>
<td>60</td>
<td>42</td>
<td>31</td>
<td>36</td>
<td>49</td>
<td>60</td>
<td>53</td>
</tr>
<tr>
<td>Complexity</td>
<td>57</td>
<td>38</td>
<td>60</td>
<td>43</td>
<td>31</td>
<td>36</td>
<td>49</td>
<td>61</td>
<td>53</td>
</tr>
</tbody>
</table>
5.3 Experimental results

fact that in MBCI systems, interactions and variations among channels becomes more complexity such that the Mobility and Complexity measures which are based on single channel information seem to have reached their limit. These results can be confirmed by taking average of classification accuracy over all nine subjects. It can be seen from Fig. 5.6 that 2PCA_ACPC and Jacobi_ACPC are higher than the results for the two TDP features while the results for the two TDP features Mobility and Complexity are nearly equal.

![Comparison between Mobility and Complexity features](image1)

Figure 5.5: Comparison between Mobility and Complexity features.

![Ranking of ACPC methods and TDP features based on average classification accuracy over all nine subjects](image2)

Figure 5.6: Ranking of ACPC methods and TDP features based on classification accuracy average over all nine subjects.
5.4 Discussion

5.4.1 Visualization of Approximation-based Common Principal Components

Figure 5.7: Visualization of three sample common principal components. The first common principal component tends to extract brain functional information at right frontal lobe and left parietal lobe. The second one extracts brain functional information at the left frontal lob and right parietal lob. And the third common principal component focuses on the top of the frontal lobe.

The visualization of these approximation-based common principal components helps us understand their functions and thus analyze brain signals and understand brain functions. Therefore, the visualization of these components can help us interpret these components or features. The method proposed in [Blankertz et al., 2008b] was adopted to visualize common principal component coefficients extracted by the 2PCA_ACPC method. The map was created in two steps. In the first step, the eigenvalues of a component were mapped to a scalp which was represented by a 2-dimensional grid. The electrode locations as shown in Fig. 5.2 provide necessary coordinates for the data grid. In the second step, the other missing data points in the grid were linearly interpolating. A bilinear interpolation was used in this step. It was conducted as follows.

Assuming that it is necessary to find the value at the point \((x, y)\), denoting \(\text{Col}(x, y)\). Further assuming that the values at four surrounding points \((x_1, y_1)\), \((x_1, y_2)\), \((x_2, y_1)\), and \((x_2, y_2)\), correspondingly denoting \(\text{Col}(x_1, y_1)\), \(\text{Col}(x_1, y_2)\), \(\text{Col}(x_2, y_1)\), and \(\text{Col}(x_2, y_2)\) have been known. By applying linear interpolation first to the \(x\)-direction and then to the \(y\)-direction, the value of the point \((x, y)\) can be estimated.
5.4 Discussion

by Eq. (5.1).

\[Col(x, y) \approx \frac{1}{(x_2 - x_1)(y_2 - y_1)} \left(Col(x_1, y_1)(x_2 - x)(y_2 - y) + Col(x_2, y_1)(x - x_1)(y_2 - y) + Col(x_1, y_2)(x_2 - x)(y - y_1) + Col(x_2, y_2)(x - x_1)(y - y_1) \right) \] (5.1)

Fig. 5.7 shows three sample common principal components formed by 2PCA_ACPC which have the largest corresponding eigenvalues. It is seen that different common principal components target at different regions for spatial filtering. The first common principal component tends to extract brain functional information at the right frontal lobe and left parietal lobe. The second one extracts brain functional information at the left frontal lob and right parietal lob. And the third common principal component focuses on the top of the frontal lobe. The visualizations of these common principal components also show that the CPCs are orthogonal. It means that the most useful information extracted through these components is not overlapped. Such visualizations can be useful for understanding brain functions in neutral related disciplines.

5.4.2 Effect of the number of selected common principal components on classification accuracy of 2PCA_ACPC

As stated at the beginning of Section 5.3, 17 components which contribute about 80% of sum of eigenvalues of all components for 2PCA_ACPC were selected. It is seen that the parameter of number of selected components is the most important one in the 2PCA_ACPC method. This experiment was designed to analyze the effects of this important parameter on classification accuracy. The same dataset as in above experiments was used for analysis. However, instead of selecting fixedly 80% of all components, the number of selected components was varied. This variation could help the research see the effect of number of selected components on classification accuracy. Basically, the more number of selected components, the more information there was. However, the more number of selected components, the more time was needed for
training and testing the classifiers. The percentage of the sum of eigenvalues varied from 20% to 100% with a step of 20%. Fig. 5.8 shows the classification accuracy of the experiments.

![Effect of number of selected components on classification accuracy](image)

Figure 5.8: The effect of the number of selected components on classification accuracy of $2PCA_ACPC$ method. The percentage numbers near the term $2PCA_ACPC$ are percentages of the sum of eigenvalues of all components to which the selected components need to exceed.

The result shows that the number of selected components and the classification accuracy have a positively linear relation. Moreover, in comparison with CSP-based methods as shown in Fig. 5.9, even with 60% of the sum of eigenvalues, $2PCA_ACPC$ can achieve better accuracy than CSP_1vsN and CSP_pairs for five subjects (S1, S2, S4, S5, and S6), and slightly lower than or comparable to for other three subjects (S3, S8, and S9) among all nine subjects. Similar comparison with TDP features shows that even with 40% of the sum of eigenvalues $2PCA_ACPC$ can achieve better accuracy than $Mobility$ and $Complexity$ features at all nine subjects. At the same time, when the number of components was selected basing on 20% of the sum of eigenvalues, $2PCA_ACPC$ can achieve better accuracy than $Mobility$ and $Complexity$ for five subjects (S1, S4, S5, S6 and S9) among nine subjects participating in the experiment. The results can be seen in Fig. 5.10.
5.4 Discussion

Figure 5.9: The effect of the number of selected components on classification accuracy of 2PCA_ACPC method when compared with CSP-based methods. The percentage numbers near the term 2PCA_ACPC are percentages of the sum of eigenvalues of all components to which the selected components need to exceed.

Figure 5.10: The effect of the number of selected components on classification accuracy of 2PCA_ACPC method when compared with TDP features. The percentage numbers near the term 2PCA_ACPC are percentages of the sum of eigenvalues of all components to which the selected components need to exceed.
5.4.3 Effect of the number of selected common principal components on classification accuracy of \textit{Jacobi_ACPC}

As stated at the beginning of Section 5.3, 16 components were selected for \textit{Jacobi_ACPC} analysis to make it comparable with \textit{2PCA_ACPC}. This experiment was designed to analyze the effects of the number of selected components on the classification accuracy of \textit{Jacobi_ACPC}. Similarly to analyzing the effect of the number of selected common principal components on classification of \textit{2PCA_ACPC}, the same dataset was used for analysis as in above experiments. The number of selected components varied from 4 to 22 components with a step of 2. Fig. (5.11) shows classification accuracy of the experiment.

![Effect of number of selected components on classification accuracy](image)

Figure 5.11: The effect of the number of selected components on the classification accuracy of \textit{Jacobi_ACPC} method. The numbers near the term \textit{Jacobi_ACPC} represent the number of selected components.

It is seen that, by trend, there is also a positively linear relation between the number of selected components and the classification accuracy when using \textit{Jacobi_ACPC}. However, the trend is less stable than that of the \textit{2PCA_ACPC} method. There are some classification accuracy declines when number of selected components increases in all nine subjects’ trend lines. In comparison with \textit{CSP}-based base-line methods, the classification accuracies are still lower than results of \textit{CSP_1vsN} and \textit{CSP_pairs}.
for six subjects out of nine subjects (S1, S2, S3, S7, S8, and S9), although selecting all 22 components can help \textit{Jacobi_ACPC} achieve higher classification accuracy. For the other three subjects, \textit{Jacobi_ACPC} achieves slightly better results than those of the \textit{CSP}-based methods. Meanwhile, in comparison with \textit{TDP} features, \textit{Jacobi_ACPC} is seen to achieve higher accuracy than or be comparable with \textit{TDP} features when experimented on 12 selected components. These results are shown in Fig. 5.12 and Fig. 5.13.

\begin{figure}[h]
\centering
\includegraphics[width=0.6\textwidth]{figure5.12.png}
\caption{The effect of the number of selected components on the classification accuracy of \textit{Jacobi_ACPC} method when compared with \textit{CSP}-based methods. The numbers near the term \textit{Jacobi_ACPC} represent the number of selected components.}
\end{figure}

\subsection{5.4.4 Comparison with participants of BCI Competition IV on Dataset 2a}

Although comparing with the participants of the BCI Competition IV on the same dataset was not the research’s purpose, this section presents a brief comparison between results of \textit{ACPC} methods and of participants in the competition, due to working on the same dataset.

There were five competitors in the task on Dataset 2a of BCI Competition IV. All of them used Common Spatial Patterns [BCI, 2008] as features in their models. Kai \textit{et al.} used the method applying CSP with One-versus-The-Rest strategy. More-
5.4 Discussion

Figure 5.13: The effect of the number of selected components on the classification accuracy of Jacobi ACPC method when compared with TDP features. The numbers near the term Jacobi ACPC represent the number of selected components.

Moreover, their algorithm was based on the subject specific frequency band and heavily depended on the feature selection technique called Mutual Information Best Individual Features. Liu applied the strategy of converting a multi-class BCI problem to multiple 2-class BCI problems. The method has an adaptive window time selection. Unfortunately, the authors did not explain much about this important step. The three other groups of participants applied pure One-versus-The-Rest strategy and did not rely on the feature selection method. These are the same as the proposed ACPC methods so comparing with them is more appropriate. To compare on the same measurement, the results in the competition [BCI, 2008] which is reported by Kappa coefficient were converted to classification accuracy as proposed in [Schlögl et al., 2007]. It is noted that the final results from the competition are actually the maximum accuracy that a method could achieve, while the research’s results are the averaged accuracies. Table 5.4 shows these results.

In general, 2PCA_ACPC is the best for the first six subjects, the second place for subjects S8 and S9, and the third place for subject S7. Meanwhile, the other method, Jacobi ACPC, has higher accuracy than those of Wei, Damien, and Jin and lower than those of Kai and Liu. In exceptional cases, Jacobi ACPC works well for Subject 6 (the best) and for Subject 5 (the second) while it does not work well for
Table 5.4: Comparison of classification accuracy between ACPC and methods of the participants (in %) on Dataset 2a of BCI Competition IV. The results of the competition are converted from Kappa coefficient to accuracy measure and rounded to the nearest integer values. The results of 2PCA_ACPC and Jacobi_ACPC are rounded to the nearest integer values. 2PCA_ACPC and Jacobi_ACPC use 22 components.

<table>
<thead>
<tr>
<th>Author</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kai’s</td>
<td>76</td>
<td>57</td>
<td>81</td>
<td>61</td>
<td>55</td>
<td>45</td>
<td>83</td>
<td>81</td>
<td>71</td>
</tr>
<tr>
<td>Liu’s</td>
<td>77</td>
<td>51</td>
<td>78</td>
<td>58</td>
<td>37</td>
<td>41</td>
<td>75</td>
<td>80</td>
<td>77</td>
</tr>
<tr>
<td>Wei’s</td>
<td>54</td>
<td>39</td>
<td>61</td>
<td>50</td>
<td>30</td>
<td>36</td>
<td>47</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>Damien’s</td>
<td>60</td>
<td>44</td>
<td>74</td>
<td>48</td>
<td>34</td>
<td>30</td>
<td>25</td>
<td>60</td>
<td>57</td>
</tr>
<tr>
<td>Jin’s</td>
<td>56</td>
<td>38</td>
<td>54</td>
<td>44</td>
<td>30</td>
<td>37</td>
<td>51</td>
<td>59</td>
<td>53</td>
</tr>
<tr>
<td>Jacobi_ACPC</td>
<td>70</td>
<td>46</td>
<td>71</td>
<td>50</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>66</td>
<td>64</td>
</tr>
<tr>
<td>2PCA_ACPC</td>
<td>84</td>
<td>59</td>
<td>82</td>
<td>51</td>
<td>51</td>
<td>74</td>
<td>80</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

Subject 7. A close look at the detailed description of algorithms of five participated groups shows that the proposed method Jacobi_ACPC has higher accuracy than pure One-versus-The-Rest strategy without any expensive feature selection mechanism and has lower accuracy than the same strategy equipped with expensive feature selection techniques. This result is confirmed by taking average of classification accuracy over all nine subjects. On average, over all nine subjects, 2PCA_ACPC is the best method while Jacobi_ACPC achieves higher classification accuracy than the methods used by Wei, Damien and Jin. Fig. 5.14 shows this result.
Figure 5.14: Comparison between the proposed ACPC methods with the methods of the participants in the BCI Competition IV on Dataset 2a. The classification accuracy is averaged over all nine subjects.
Chapter 6

General Aggregate Models for Motor Imagery-Based BCI Systems

This chapter investigates the effect of activation and delay issue in BCI experiments. This effect leads to very high inter-session and inter-subject variability when conducting BCI experiments which complicates the analysis of BCI systems. Overcoming the issue can enhance improvement of the BCI systems. Two general aggregate models at score and feature levels were introduced here, to overcome the issue. The chapter begins with an introduction to activation and delay issue in BCI experiments. It then comes with the proposed general aggregate models. Experimental methods and results of the proposed aggregate models are discussed in the following chapter.

6.1 Activation and delay issue in BCI experiments

The activation and delay issue is well known [Macaluso et al., 2007][Toni et al., 1999] in conducting experiments in BCI systems. It is an effect in which the times of stimulus and response, that are expected to be the same or nearly the same, are actually different. In theory, when receiving stimulation input, the brain needs time to process and then produce output. Macaluco et. al. in their work [Macaluso et al., 2007], using fMRI in a delay paradigm, experimented with two sensory modalities:
vision or touch, two motor effectors: eyes or hands, and two movements: left or right. They found that there are delay activations which depending on subjects and types of motor activity. Their work, however, mainly focuses on estimating the delay which is the start time point but not the end time point which helps extract the meaningful portion of the trial. This delay effect, in turn, is the origin of the high inter-subject and inter-session variability which makes BCI systems very difficult to become practical systems. Beside that, the experiments using functional Near Infrared Spectroscopy (fNIRS) technology [Hoang et al., 2013a][Hoang et al., 2013b], which will be presented in details in section 6.2, show that even within a trial, subjects can lose their concentration; therefore, there are multiple portions containing meaningful signal in a trial rather than one. Thus, the proposed method is based on aggregate models instead of dealing directly with these issues.

Aggregate model is a well known approach in signal processing, especially in speech signal processing [Ellis, 1997]. There are two main types of aggregate model. In the first type, a trial is divided into multiple signal frames. Features of these frames are then extracted and used for training classifiers. After that, the classification result of a trial is determined by a aggregate function whose input are results from classifying its frames. The aggregate function can be a min, max, average or count-based function. In the second type, the aggregate model is called fusion model in which different sources, features or classifiers of the same trial are combined by a aggregate function. While the fusion model is widely used in BCI systems [Zhang et al., 2007][Gurkok and Nijholt, 2012], there were a few work following the first type of aggregate models which successfully applied to other signals such as speech.

6.2 An experimental analysis on activation and delay issue using fNIRS

6.2.1 Subjects

Seven healthy subjects who were all male and within the age range from 20 to 31 voluntarily participated in the study. None of the recruited subjects had neurological or psychiatric history or was on medication. Each of them gave written informed
consent for the experiment. All experiments were performed at the Laboratory of Biomedical Engineering Department of International University, Viet Nam. During the experiment, the subjects sat on a comfortable arm-chair in a dark and sound proof room.

6.2.2 Experimental procedure

All of the subjects were asked to sit on an arm-chair in front of a screen which displayed the stimuli in a dark and sound proof room. Three protocols were used. The first protocol (Fig. 6.1a) consisted of five loops including interchange of two left-hand and two right-hand imagery loops. Each of these loops lasted 30 seconds. At the end, there was a resting loop which lasted 10 seconds. In total, a trial lasted 130 seconds. The second protocol (Fig. 6.1b) (the third protocol Fig. 6.1b) consisted of four loops including three left-hand imagery loops (right-hand correspondingly) and a resting loop at final. Therefore, a trial of the second protocol lasted 100 seconds. A typical loop as shown in Fig. 6.1d consisted of 10 seconds of resting and then 20 seconds of left or right imagery task. Three videos were designed following the three above protocols. In these stimulated videos, there was a ball which moved to the left or right, and rotated to the left or right corresponding to the stimuli. During the resting time, a blank screen was displayed. In imagery time, the subjects clutched a ball by their left hand or right hand corresponding to the stimuli on the screen. Every subject was asked to finish all three protocols at one session. There were four subjects taking part in experiments for one session, two subjects taking part in experiments for two sessions, and one subject taking part in experiments for three sessions. The variation in the number of sessions taken part in by the subjects was due to the constraint of time. Any two different sessions of the same subject were conducted on two different days.

6.2.3 Data acquisition

A 14-channel NIRS instrument (Shimadzu FOIRE3000) was used for acquiring oxygenated and deoxygenated haemoglobin concentration changes during the experiments. It operated at three different wavelengths of 780 nm, 805 nm and 830 nm,
6.2 Analysis on activation and delay issue using fNIRS

(a) The first protocol with two left and right cues mixed together.

(b) The second protocol with three left cues.

(c) The third protocol with three right cues.

(d) A typical 30 second loop includes 10 seconds for resting and 20 seconds for specific cue (left or right).

Figure 6.1: Protocols were used in fNIRS experiments to prove activation and delay issue.

emitting an average power of 3 mW mm$^{-2}$. The detector optodes were placed at a distance of 3 cm from the illuminator optodes. The optodes were arranged on the left and right hemisphere of the subject’s head, above the motor cortex, around C3 (left hemisphere) and C4 (right hemisphere) areas (according to the International 10-20 System) as illustrated in 6.2. For each hemisphere, three illuminators and three detectors were used. A pair of illuminator and detector optodes formed one channel. So in total, there were seven channels on each hemisphere, and fourteen channels on both hemispheres. The photomultiplier cycled through all the illuminator-detector pairings to acquire data at every sampling period. The sampling rate was approximately 18.2 Hz. Finally, the acquired signal was digitized by a 16bit analog to digital converter.

The used fNIRS imaging system adopted the near infrared lasers of three wavelengths: 780 nm, 805 nm, and 830 nm. For each channel $j - th$ among fourteen channels, optical densities $A_{j,\lambda}$ at all wavelengths λ are measured. Then, from the
changes in the optical density $A_{j,\lambda}$ at all wavelengths, relative concentration changes of oxy-generated haemoglobin Δoxy_j and of deoxy-generated haemoglobin $\Delta deoxy_j$ were estimated as follows

$$
\begin{pmatrix}
\Delta oxy_j \\
\Delta deoxy_j
\end{pmatrix} =
\begin{pmatrix}
-1.4887 & 0.5970 & 1.4847 \\
1.8545 & -0.2394 & -1.0947
\end{pmatrix}
\begin{pmatrix}
A_{j,780} \\
A_{j,805} \\
A_{j,830}
\end{pmatrix}.
$$

(6.1)

Figure 6.2: Optode positions used in the fNIRS experiments to prove activation and delay issue on a subject. There were three illuminators (blue) and three detectors (red) on each hemisphere. A pair of illuminator and detector optodes formed one channel on each hemisphere. There were totally 14 channels in the experiments.

6.2.4 Results on activation and delay issue experiment

All seven subjects reported that it had been very difficult for them to pay full attention in imaging left- or right-moving tasks. In the duration of 20 seconds of a specific task loop, they believed that there were more than two times they could not control their motor imagery. Therefore, in a left (right) loop, they could rest without any resting cue or even imagine about right (left, correspondingly) moving and vice versa. They believed that it was natural to lose focus during a loop due to tiredness or weariness.
6.3 A general aggregate model at score level for motor imagery-based BCI systems

The idea of aggregate model came from the two observations when the above experiment was conducted. The first observation was that there was a delay between stimulation and response; and the delay depended on various factors such as subjects, types of stimulation, types of tasks, and the design of experiments. The second observation was that it was difficult to keep subjects concentrated during experiments, especially for motor imagery tasks. Therefore, instead of extracting a single informative portion of brain signal for a task from a trial, multiple portions called frames were extracted from the trial. The frames can be overlapped to make sure they can capture sufficient information due to the activation and delay issue. They can also be separated to make sure they can capture multiple portions of a task in a trial if the subject does not concentrate. Two parameters which are window size w (frame size) and step size s (frame rate) are used to set a trade off between these two issues. Fig. 6.3 shows how the frames were created and used. These frames were equally treated in the training and testing phases. They had the same class label as their trial. Feature extraction methods such as CSP can then be used. To avoid over-fitting problem, all frames of a trial must either be in the training set or the testing set. The classification result of a testing trial was determined by an aggregate function on the classification results of all frames of the testing trial.

Given a testing trial X_i, let $Fr(X_i) = \{fr_k\}$ be the set of all frames extracted from the signal X_i, in which fr_k is the k-th frame. The aggregate function $L(X_i)$ is based on this statement: the trial is classified to a class c if there are at least Th frames classified to that class c by some classifier Cl. $L(X_i)$ can be formulated as follows

\[
L(X_i) = \arg_{c}\left(\sum_{k=1}^{||Fr(X_i)||} (Cl(fr_k) = c) \geq Th \right)
\]

(6.2)

where X_i is a testing trial, fr_k is the k-th frame in the frame set $Fr(X_i)$, c is the class label and $Classifier$ is the trained classifier.

In particular, SVM was used as the classifier in the research’s experiments and
the parameter Th was set to a half of the number of frames. It means that a trial was classified to a class c if there were at least half of the frames classified to that class c by the trained classifier SVM. Half of number of frames is a reasonable threshold given that the multi-class BCI system in this research has four class labels. The equation (6.3) shows this particular aggregate function.

\[
L(X_i) = \arg_c \left(\sum_{k=1}^{||Fr(X_i)||} (SVM(fr_k) = c) \geq \frac{||Fr(X_i)||}{2} \right)
\]

(6.3)

Figure 6.3: A general aggregate model at score level for BCI systems.
6.4 A general aggregate model at feature level for motor imagery-based BCI systems

Unlike the first general aggregate model which is fused at score level, the secondly proposed aggregate model is fused at feature level. The proposed model was based on the boosting model [Schapire and Freund, 2012]. The model is presented at Fig. 6.4. Given a testing trial X_i, let $Fr(X_i) = \{fr_k\}$ be the set of all frames extracted from the signal X_i, in which fr_k is the k-th frame. Features $z(Fr(X_i))$ are then extracted by some feature extraction algorithm for each frame. Feature $z(X_i)$ of the trial X_i is then formed by combining features of its frames $z(Fr(X_i))$. Let Z be the set of all trial features $Z = \{z(X_i)\}$. These features $z(X_i)$ accompanying their class label $Lab(X_i)$ are considered as the data for training a weak classifier h_t, where $t \in \{1..Time\}$ and $Time$ is the number of times the boosting classifier is trained. The

![Diagram of a general aggregate model at feature level for BCI systems](image.png)

Figure 6.4: A general aggregate model at feature level for BCI systems. In this diagram, n is the number of frames of a trial and m is the number of weak classifiers is trained.
training dataset TrainSet has elements in a form of $(z(X_i), \text{Lab}(X_i))$.

Let D_t be the set of weights over training data at time t and $D_t(i)$ be the weight of the i-th training sample of the weight distribution at time t. The weighting strategy was very simple: the more complicated was a training sample in classification, the more weight it received. With this distribution, complicated training samples would get more attention in building weak classifiers over time. Initially, all the weights in D_1 were equally set to $\frac{1}{||\text{TrainSet}||}$.

The goodness of a weak classifier $h_t : X \rightarrow \text{Lab}$ was defined by its error ϵ_t in classifying the training dataset as shown in Eq. (6.4).

$$\epsilon_t = \sum_{z(X_i) \in Z: h_t(z(X_i)) \neq \text{Lab}(X_i)} D_t(i)$$ (6.4)

This aggregate model at feature level then fused these weak classifiers h_t together in order to form a strong classifier $H : X \rightarrow \text{Lab}$ which could be used to classify the testing data. The fusion can be done by a linear combination of weak classifiers h_t as shown in Eq. 6.5 for binary classification and in Eq. (6.6) for multi-class classification. The argmax function returns the class label which maximizes the value of the accompanying function, which is the sum function in this case.

$$H(X) = \text{sign}\left(\sum_{t=1}^{\text{Time}} \alpha_t h_t(X)\right)$$ (6.5)

$$H(X) = \text{argmax}_{y \in \text{Lab}} \sum_{t: h_t(X) = y} \alpha_t$$ (6.6)

Logically, a weak classifier h_t, which has low goodness represented by a higher error ϵ_t, should play less important role in the final classifier H than another weak classifier, which has high goodness representing by a lower error. The coefficient α_t, therefore, was defined at in Eq. 6.7.

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t}\right).$$ (6.7)

It can be seen that this aggregate model is actually a boosting model in which the features extracted from the frames of a trial are fused at feature level. Through weak learners, the boosting model plays the role as a feature selector which selects features from all frames of a trial.

Particularly, the decision tree method proposed by Quinlan [Quinlan, 1993] was used to train weak learners in this aggregate model. The decision tree was chosen...
because it is a lightweight classifier which is very efficient for being the weak classifiers in the boosting model, and a multi-class oriented learning algorithm.

6.5 Segmented Spatial Filters for Multi-class Brain-Computer Interface

As described above, the two general aggregate models are very flexible. In fact, they can be used with any feature extraction including the CSP-based feature extraction methods and the research proposed ACPC analysis. This combination leads to a new method called segmented spatial filters (SSF). It inherits the advantages from the both spatial filters such as ACPC and CSP-based methods, and the aggregate models. As a result, The SSF method can not only improve the spatial resolution of EEG signals but also efficiently deal with the inter-subject and inter-session variability in BCI systems. Basing on this argument, six specific feature extraction models were proposed naming correspondingly SAM_{CSP_1vsN}, SAM_{CSP_pairs}, SAM_{2PCA_ACPC}, FAM_{CSP_1vsN}, FAM_{CSP_pairs} and FAM_{2PCA_ACPC}. They were formed by combinations of CSP_1vsN, CSP_pairs, $2PCA_ACPC$ as feature extraction methods and the two general aggregate models at score and feature levels. While the first three models were formed by using corresponding feature extraction methods CSP_1vsN, CSP_pairs and $2PCA_ACPC$ in the aggregate model at score level, the last three models were formed in the aggregate model at feature level.

Taking into the view of aggregate model based on segments of trial instead of the whole one, SAM_{2PCA_ACPC} and SAM_{2PCA_ACPC} are called segmented approximation-based common principal components (SACPC) analysis. Similarly, SAM_{CSP_1vsN}, SAM_{CSP_pairs}, FAM_{CSP_1vsN}, and FAM_{CSP_pairs} are called segmented CSP-based feature method. Further taking into the fact that the purpose of the three feature extraction methods CSP_1vsN, CSP_pairs and $2PCA_ACPC$ is to improve the spatial resolution of EEG signals, these six models are called segmented spatial filters methods. These segmented spatial filters methods, while still keep the property of improving the spatial resolution of brain signals, are very robust when dealing with the inter-subject and inter-session variability in BCI
experiments. In summary, they are expected to be efficient in both subject-dependent multi-class and subject-independent multi-class BCI systems.
Chapter 7

Experiments with Aggregate Models

This chapter presents the experiments undertaken with aggregate models proposed in the previous chapter. The dataset 2a of the BCI competition IV was used in the experiments. The spatial CSP-based feature extraction was used as the feature extraction method in the aggregate models. Using the popular dataset in multi-class multi-subject BCI systems, it was proven that the proposed aggregate models enhanced the performance of both subject-dependent and subject-independent BCI systems. The experimental results also showed that a combination of spatial filter with segmented techniques in aggregate models is a very good solution in motor imagery-based BCI systems.

7.1 Dataset used in experiments

As in experiments with the ACPC method, the Dataset 2a from the BCI Competition IV [Brunner et al., 2008] which is a well-known dataset for multi-class BCI systems, was chosen for conducting the experiments with the aggregate models. To make it easier for readers to follow, a summary is provided here. For a detailed description, readers should go to section 5.1.

The dataset was acquired by Graz University of Technology, Austria using Electroencephalography (EEG) technology with 22 channels at sampling frequency 250Hz.
7.2 Experiment methods and validations

It was then bandpass-filtered with the low and high cut-off frequencies at 0.5Hz and 100Hz, respectively. Another 50Hz notch filter was also applied to eliminate power line noise. Nine subjects were asked to perform 4 classes of motor imagery tasks by moving cursor left, right, down or up corresponding with their imagination of movement of the left hand, right hand, both feet and tongue. Each subject participated in two sessions on two different days. In each session, there are six runs separated by short breaks in between. There were forty eight trials in each run equally distributed for all four classes. In total, there were 288 trials per session and 576 trials per subject. For each trial, there were two seconds to help participants prepare themselves. After that, there was a cue appearing and staying on screen in 1.25 seconds. The subjects were asked to carry out motor imagery tasks until the 6th second. The paradigm of getting this dataset is illustrated as in Fig. 5.1. Fig. 5.2 shows positions of the electrodes used in the experiment and corresponding to the standard 10-20 international system. The distance between the two neighbour electrodes is 3.5 centimetres.

7.2 Experiment methods and validations

The aim of the experiments was to evaluate and compare the proposed aggregate models with other non-aggregate models. Specifically, comparison was between CSP_{1vsN}, CSP_{pairs} and $2PCA_{ACPC}$ and their aggregate model versions respectively including $SAM_{CSP_{1vsN}}$, $FAM_{CSP_{1vsN}}$, $SAM_{CSP_{pairs}}$, $FAM_{CSP_{pairs}}$, $SAM_{2PCA_{ACPC}}$, and $FAM_{2PCA_{ACPC}}$ as described in the previous chapter.

Being different from the experiments conducted with $ACPC$ methods in which the researcher used the similar processing and evaluation method to that proposed by the competition organizers, a different processing and evaluation method was used for the experiments reported with this chapter. In the $ACPC$ experiments, as in the competition proposed method, a real trial was divided into many pseudo-trials which had 2-second lengths. In the aggregate model experiments, there was no pseudo-trial. The real trial was treated as a whole one. Then, these proposed aggregate models and base-line methods used the whole trial as their data for classification tasks.

As in the competition, the trial was extracted from the time point 2.5 second to the end which was at the 6th second. The length of a trial was 3.5 seconds. All these
trials were bandpass filtered, with a frequency cut-off at 8Hz and 30Hz before being extracted features, depending on the methods being used. In the non-aggregate models, features were extracted from the trial and then fed into a Support Vector Machine (SVM) for the classification task. The SVM’s popular kernel function RBF $K(x, x') = e^{-\gamma \|x-x'\|^2}$, a state of the art method for classifying in BCI systems [Lotte et al., 2007], was chosen to classify the data. A grid search was applied to get the optimal classifiers. The parameter γ was searched in range $2^k : k = -10, -9, \ldots, 19, 20$. The trade-off parameter C was searched over the grid $2^k : k = 0, 1, \ldots, 12, 13$. These parameters are the same as in experiments of the ACPC analysis. SVM was also used as classifiers in methods derived from the general aggregate model at score level. For methods derived from the general aggregate model at feature level, the final strong classifiers were used. In the boosting model, there is a parameter called $numTree$ to control the number of decision trees that can be used in the boosting algorithm. Through the experiments, it was set to 200 decision trees. There was no additional classifier used for these methods.

As stated in the previous chapter, aggregate models are expected to be robust, not only in SD-BCI systems but also in SI-BCI systems. Therefore, there are two main experiments reported in this chapter. The first experiment was about using aggregate models in SD-BCI systems, while the second was about using aggregate models in SI-BCI systems. In each of the main experiments, all six methods derived from two general aggregate models, including $SAM_{CSP}.1_vsN$, $SAM_{CSP}._pairs$, SAM_2PCA_ACPC, $FAM_CSP.1_vsN$, FAM_CSP_pairs and FAM_2PCA_ACPC, were conducted and compared.

The validation method used in the experiments was the same as in the SD-BCI experiments of the ACPC analysis. To evaluate the accuracy of the classification, the dataset was divided into training and testing data sets by ratio of 8:2. This ratio of training and testing data was fixed for both SI-BCI and SD-BCI experiments. More specifically, in the SI-BCI experiments, data of all subjects were combined together while in the SD-BCI experiments they were kept separately. The test data was normalized based on distribution parameters extracted from the training data set. A 5-fold cross validation test on the training data was performed to find the optimal parameters γ and C. These optimal parameters were then used to build classifiers
for the entire training dataset. Finally, the classifiers were applied on the testing dataset to get accuracy results. To reduce randomness due to the division of data into training and testing data, this process was run five times. The reported accuracy results were calculated by taking the average of the accuracies of the results for five runs.

7.3 Experimental results

7.3.1 Aggregate models in subject-dependent multi-class BCI systems

As described in the experimental method section, the experiments in SD-BCI systems were conducted by training and testing classifiers for each subject separately. The methods derived from aggregate models at score level (SAM) and feature level (FAM) were compared with their corresponding non-aggregate model versions (NAM). Specifically, \(\text{SAM}_{\text{CSP}_{\text{1vsN}}} \) and \(\text{FAM}_{\text{CSP}_{\text{1vsN}}} \) with \(\text{CSP}_{\text{1vsN}} \); \(\text{SAM}_{\text{CSP}_{\text{pairs}}} \) and \(\text{FAM}_{\text{CSP}_{\text{pairs}}} \) with \(\text{CSP}_{\text{pairs}} \); and \(\text{SAM}_{\text{2PCA}_{\text{ACPC}}} \) and \(\text{FAM}_{\text{2PCA}_{\text{ACPC}}} \) with \(\text{2PCA}_{\text{ACPC}} \) were compared. While non-aggregate methods including \(\text{CSP}_{\text{1vsN}} \), \(\text{CSP}_{\text{pairs}} \) and \(\text{2PCA}_{\text{ACPC}} \) were trained and tested on the whole trials, their aggregate versions including \(\text{SAM}_{\text{CSP}_{\text{1vsN}}} \), \(\text{SAM}_{\text{CSP}_{\text{pairs}}} \), \(\text{SAM}_{\text{2PCA}_{\text{ACPC}}} \), \(\text{FAM}_{\text{CSP}_{\text{1vsN}}} \), \(\text{FAM}_{\text{CSP}_{\text{pairs}}} \), and \(\text{FAM}_{\text{2PCA}_{\text{ACPC}}} \) used segmented trials with two parameters window size \(w \) and window step \(s \), set to two seconds and half of second respectively. Table 7.1 shows the classification results of the non-aggregate methods. Note that \(\text{2PCA}_{\text{ACPC}} \) used the number of components corresponding to 80% of the sum of the eigenvalues of all components. The results of the comparison between the non-aggregate methods and their aggregate models are presented in Figs. 7.1, 7.2 and 7.3.

It can be seen that in all three experiments, the aggregate models at score level were better than, or at least equal to, their corresponding non-aggregate models for most subjects. The accuracy improvement was at most at nearly 8.7% for \(\text{SAM}_{\text{CSP}_{\text{1vsN}}} \) method. There were three exceptional cases where non-aggregate methods defeated their aggregate models at score level. The three cases were equally distributed for the three methods. They were at subject 8 for \(\text{CSP}_{\text{1vsN}} \), at subject 4 for \(\text{CSP}_{\text{pairs}} \)
7.3 Experimental results

Table 7.1: The classification results (in percent) of the non-aggregate methods including CSP_{1vsN}, CSP_{pairs} and $2PCA_{ACPC}$. They were trained and tested on the whole trial which lasted 3.5 seconds. The results were rounded to the nearest integer values. $2PCA_{ACPC}$ used a number of components corresponding to 80% of the sum of the eigenvalues of all components. The bold numbers are the best results of corresponding subjects among these non-aggregate methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSP_{1vsN}</td>
<td>80</td>
<td>58</td>
<td>83</td>
<td>60</td>
<td>44</td>
<td>51</td>
<td>82</td>
<td>89</td>
<td>75</td>
</tr>
<tr>
<td>CSP_{pairs}</td>
<td>81</td>
<td>60</td>
<td>85</td>
<td>64</td>
<td>44</td>
<td>52</td>
<td>84</td>
<td>86</td>
<td>76</td>
</tr>
<tr>
<td>$2PCA_{ACPC}$</td>
<td>83</td>
<td>61</td>
<td>87</td>
<td>66</td>
<td>48</td>
<td>54</td>
<td>81</td>
<td>88</td>
<td>78</td>
</tr>
</tbody>
</table>

Figure 7.1: Comparison between CSP_{1vsN} and its aggregate models.
7.3 Experimental results

Figure 7.2: Comparison between CSP_pairs and its aggregate models.

Figure 7.3: Comparison between 2PCA_ACPC and its aggregate models.
7.3 Experimental results

Table 7.2: The improvement of classification accuracy (in percent) of $SAM_{CSP.1vsN}$, $SAM_{CSP.pairs}$, and $SAM_{2PCA.ACPC}$ over their non-aggregate methods. The positive numbers represent better results, whereas the negative numbers mean worse results. The results were rounded to two decimal places. $2PCA.ACPC$ used the number of components corresponding to 80% of the sum of the eigenvalues of all components.

<table>
<thead>
<tr>
<th>Method</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SAM_{CSP.1vsN}$</td>
<td>1.74</td>
<td>0</td>
<td>3.13</td>
<td>2.78</td>
<td>2.78</td>
<td>1.74</td>
<td>1.57</td>
<td>-0.52</td>
<td>8.70</td>
</tr>
<tr>
<td>$SAM_{CSP.pairs}$</td>
<td>2.61</td>
<td>6.61</td>
<td>1.39</td>
<td>-0.87</td>
<td>7.65</td>
<td>2.44</td>
<td>3.83</td>
<td>0.17</td>
<td>2.61</td>
</tr>
<tr>
<td>$SAM_{2PCA.ACPC}$</td>
<td>1.22</td>
<td>-0.17</td>
<td>0.52</td>
<td>0.52</td>
<td>3.13</td>
<td>1.04</td>
<td>4.00</td>
<td>1.22</td>
<td>6.96</td>
</tr>
</tbody>
</table>

and at subject 2 for $2PCA.ACPC$. On average over all subjects, aggregate models at score level of $CSP.1vsN$, $CSP.pairs$ and $2PCA.ACPC$ improved about 2.4%, 2.9% and 2.0% respectively over their original methods. Table 7.2 shows these results.

By comparison, aggregate models at feature level achieved significantly lower classification results than their non-aggregate methods. $FAM_{CSP.1vsN}$, $FAM_{CSP.pairs}$, and $FAM_{2PCA.ACPC}$ were only better than their non-aggregate methods at subject 9 as shown in Figs. 7.1, 7.2 and 7.3.

The improvement in classification accuracy of the proposed aggregate models at score level leads to another question: whether or not the aggregate function is necessary. This hypothesis was tested by leaving the framing technique and removing the aggregate function. If this hypothesis was true, the length of trials in future experiments could be significantly reduced. Unfortunately, experimental results as shown in Figs. 7.4, 7.5 and 7.6 show that reducing the time for a trial will lead to a reduction of classification results for all these framing methods $CSP.1vsN$, $CSP.pairs$ and $2PCA.ACPC$ compared with their non-framed models, which are also non-aggregate models.

In conclusion for SD-BCI systems, compared with non-aggregate methods, the corresponding aggregate models at score level improved classification accuracy up to 8.7% depending the subjects participating in the experiment in dataset 2a of the BCI
7.3 Experimental results

Figure 7.4: Comparison between \textit{CSP_1vsN} and its framed version. The framed version is the aggregate model without the aggregate function to combine results of frames together.

Figure 7.5: Comparison between \textit{CSP_pairs} and its framed version. The framed version is the aggregate model without the aggregate function to combine results of frames together.
7.3 Experimental results

Figure 7.6: Comparison between $2\text{PCA}_{\text{ACPC}}$ and its framed version. The framed version is the aggregate model without the aggregate function to combine results of frames together.

7.3.2 Aggregate models in subject-independent multi-class BCI systems

As in the SD-BCI experiments, the classification accuracy of non-aggregate methods (NAM) with methods derived from aggregate models at score level (SAM) and feature level (FAM) were compared. Specifically, $\text{SAM}_{\text{CSP}.1vsN}$ and $\text{FAM}_{\text{CSP}.1vsN}$ with $\text{CSP}.1vsN$; $\text{SAM}_{\text{CSP}.\text{pairs}}$ and $\text{FAM}_{\text{CSP}.\text{pairs}}$ with $\text{CSP}.\text{pairs}$; and $\text{SAM}_{\text{2PCA}_{\text{ACPC}}}$ and $\text{FAM}_{\text{2PCA}_{\text{ACPC}}}$ with $\text{2PCA}_{\text{ACPC}}$ were compared. While non-aggregate methods including $\text{CSP}.1vsN$, $\text{CSP}.\text{pairs}$ and $\text{2PCA}_{\text{ACPC}}$ were trained and tested on whole trials, their aggregate versions including $\text{SAM}_{\text{CSP}.1vsN}$, $\text{SAM}_{\text{CSP}.\text{pairs}}$, $\text{SAM}_{\text{2PCA}_{\text{ACPC}}}$, $\text{FAM}_{\text{CSP}.1vsN}$, $\text{FAM}_{\text{CSP}.\text{pairs}}$, and $\text{FAM}_{\text{2PCA}_{\text{ACPC}}}$ used segmented trials with two parameters: window size w and window step s set to two seconds and a half of a second respectively. Note that $\text{2PCA}_{\text{ACPC}}$ used the number of components corresponding to 80% of the sum of the eigenvalues of all components. In this experiment, all of four motor imagery tasks in the dataset 2a of the BCI IV Competition were used. In the discussion section, the problem of the two class BCI systems in which only two motor imagery tasks among
these four were used are discussed. The results of this experiment are shown in Fig. 7.7.

Figure 7.7: Comparison between CSP_{1vsN}, CSP_{pairs}, $2PCA_{ACPC}$ and their corresponding aggregate models in a subject-independent multi-class BCI experiment. NAM: Non-aggregate model; SAM: Aggregate model at score level; FAM: Aggregate model at feature level. There were nine subjects in the experiment. $2PCA_{ACPC}$ used the number of components corresponding to 80% of the sum of the eigenvalues of all components.

The results of this experiment are fairly consistent with the ones of the above subject-dependent multi-class BCI. While the aggregate models at score level show higher classification accuracy than their corresponding non-aggregate models, the aggregate models at feature level show much lower classification accuracy. The best improvement in classification was of $SAM_{2PCA_{ACPC}}$ compared with its corresponding non-aggregate model $SAM_{2PCA_{ACPC}}$. It was about 4.77%. $SAM_{CSP_{1vsN}}$ and $SAM_{CSP_{pairs}}$ enhanced the classification accuracy about 1.15% and 2.93% over CSP_{1vsN} and CSP_{pairs}, respectively.

Due to the property of high inter-subject variability of subject-independent multi-class BCI systems, the experiment was extended by analysing different window step s parameter values. Instead of only one value at one half seconds, the parameter window step s value was now set to one second and one and a half seconds. Table 7.3 shows the best achieved results from variation of this parameter.
Figure 7.8: Multiple comparison test results of 4 models using CSP_1vsN methods for 4-class SI-BCI systems. The non-aggregate model is represented by step size $s = 875$. The step size 125, 250 and 375 correspond to duration of 0.5, 1 and 1.5 seconds.
7.3 Experimental results

Figure 7.9: Multiple comparison test results of 4 models using CSP_{pairs} methods for 4-class SI-BCI systems. The non-aggregate model is represented by step size $s = 875$. The step size 125, 250 and 375 correspond to duration of 0.5, 1 and 1.5 seconds.
7.3 Experimental results

Figure 7.10: Multiple comparison test results of 4 models using $2PCA_{ACPC}$ methods for 4-class SI-BCI systems. The non-aggregate model is represented by step size $s = 875$. The step size 125, 250 and 375 correspond to duration of 0.5, 1 and 1.5 seconds.
7.3 Experimental results

Table 7.3: The best classification accuracy (in percent) of aggregate models and non-aggregate models of three methods \textit{CSP_1vsN}, \textit{CSP_pairs} and \textit{2PCA_ACPC}.

<table>
<thead>
<tr>
<th>Method</th>
<th>NAM</th>
<th>The best of SAM</th>
<th>The best of FAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{CSP_1vsN}</td>
<td>57.8</td>
<td>71.6</td>
<td>36.4</td>
</tr>
<tr>
<td>\textit{CSP_pairs}</td>
<td>58.8</td>
<td>72.3</td>
<td>37.0</td>
</tr>
<tr>
<td>\textit{2PCA_ACPC}</td>
<td>59.9</td>
<td>74.5</td>
<td>36.5</td>
</tr>
</tbody>
</table>

It can be seen that with an appropriate selection of the window step parameter, the aggregate models at score level achieve noticeably higher classification accuracy results than the corresponding non-aggregate models. The best result is when the step size s is set to 375 data points (1.5 seconds). The differences between \textit{CSP_1vsN} and \textit{CSP_pairs} methods are not much, with a slight advance to the pairing methods. To validate these experimental results, two one-way analysis of variance (ANOVA) tests were conducted on the factor of step size s including the first three values for the aggregate model and the last one for non-aggregate model for both \textit{CSP_1vsN} and \textit{CSP_pairs} methods. The p-values returned from the F-test were about 0.00000004 and 0.0000000004 for \textit{CSP_1vsN} and \textit{CSP_pairs}, respectively. This means that there is a significant difference between values of the step size s. A multiple comparison test was further conducted to see the difference between any two values. From the results, shown in Figs. 7.8, 7.9 and 7.10, it can be seen that the non-aggregate model is not significantly different from the first aggregate model, with $s = 0.5$ seconds and is significantly lower than the other two aggregate models with $s = 1$ second and $s = 1.5$ seconds.
7.4 Discussion

7.4.1 Aggregate models in 2-class subject-dependent multi-class BCI systems

This experiment was conducted to compare the proposed aggregate models with the method of Lotte et al. [Lotte et al., 2009]. The focus was only on aggregate models at score level due to the results of at feature level not being good enough in the previous experiments. Moreover, $2PCA_{ACPC}$ is not considered for this discussion because it was originally designed for multi-class BCI systems. As seen in the work of Lotte et al., only two mental tasks were used in the experiment, namely left hand and right hand imagery. The classification results were reported in Table 7.4.

Table 7.4: The classification results of aggregate models $AM_{CSP_{1vsN}}$ and $AM_{CSP_{pairs}}$ and non-aggregate models CSP_{1vsN} and CSP_{pairs} in a 2-class SI-BCI system. The bold numbers are the best results for each method.

<table>
<thead>
<tr>
<th>Method</th>
<th>$AM_{CSP_{1vsN}}$</th>
<th>CSP_{1vsN}</th>
<th>$AM_{CSP_{pairs}}$</th>
<th>CSP_{pairs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification rate</td>
<td>83.1%</td>
<td>67.9%</td>
<td>82.3%</td>
<td>72.2%</td>
</tr>
</tbody>
</table>

Similar to the first experiment, it is evident that the aggregate models achieved higher results than the non-aggregate models for both CSP_{1vsN} and CSP_{pairs} methods. The results for the non-aggregate models were the same as the results reported in the work of Lotte et al. [Lotte et al., 2009]. One-way ANOVA tests were conducted to validate these results. P-values of CSP_{1vsN} and CSP_{pairs} methods were very small, thus confirming that there are significant differences between values set to the step size s. Figs. 7.11 and 7.12 show the differences. In these experiments, the results for non-aggregate models were about 5% better than the best result of Lotte et. al. [Lotte et al., 2009]. It must be noted that SVMs were used as classifiers here, while Lotte et al. did not do so.
Figure 7.11: Multiple comparison test results of 4 models using CSP\textsubscript{1vsN} methods for 2-class SI-BCI systems. The non-aggregate model is represented by step size $s = 875$. The step size 125, 250 and 375 correspond to duration of 0.5, 1 and 1.5 seconds.
Figure 7.12: Multiple comparison test results of 4 models using CSP_pairs methods for 2-class SI-BCI systems. The non-aggregate model is represented by step size \(s = 875 \). The step size 125, 250 and 375 correspond to duration of 0.5, 1 and 1.5 seconds.
7.4 Discussion

7.4.2 SD-MBCI systems versus SI-MBC systems

This experiment was conducted for the purpose of finding the difference, if any, between SD-BCI and SI-BCI systems. In this experiment, the proposed aggregate models at score level were applied for both SD-BCI and SI-BCI systems. The focus was on 4-class BCI systems. In SD-BCI systems, subjects were trained and tested individually. The experimental method and validations for the SD-BCI experiments were still the same as for the SI-BCI experiments except that the data of all subjects were not mixed together. To compare the SD-BCI and SI-BCI systems, the results of the SI-BCI were broken down by subject. All the results of the different values of the window step parameter s are presented here. The values used in this experiment included 0.5, 1 and 1.5 seconds which correspond to 125, 250 and 375 data points. The results are reported in Tables 7.5, 7.6 and 7.7 which correspond with SAM_{CSP_1vsN}, SAM_{CSP_pairs} and SAM_2PCA_ACPC methods. To compare these classification results, the accuracy differences, which is defined by subtracting the results of SD-BCI from the corresponding results of SI-BCI, were calculated. Fig. 7.13, Fig. 7.14 and Fig. 7.15 show these differences for the SAM_CSP_1vsN, SAM_CSP_pairs and SAM_2PCA_ACPC methods, respectively.

It can be seen that all accuracy differences in Figs. 7.13, 7.14 and 7.15 are positive. This means that the classification results using aggregate models in the SD-BCI systems are greater than those of the SI-BCI systems. Said in another way, the SI-BCI systems are more complicated than the SD-BCI systems. These results are similar to results achieved in 2-class BCI systems. The range of accuracy differences between the SD-BCI and SI-BCI systems was very high being from 0.0% to 28.2% depending on step size s, subjects and aggregate models.

7.4.3 Aggregate models with TDP features

This section reports the investigation into the base-line method TDP with its aggregate models. The focus was on SAM models only because as in the previous outcome, FAM seemed to be not as good as SAM. As in the main experiments, the aggregate models at score level with Mobility and Complexity as feature extractors were compared with corresponding nonaggregate models. The two aggregate models are named $SAM_Mobility$ and $SAM_Complexity$ correspondingly. Figs. 7.16 and
7.4 Discussion

Table 7.5: Classification results (in %) of SD_MBCI systems using SAM_CSP_1vsN method for 9 subjects in dataset 2a of the BCI competition IV. The results are rounded to one decimal place.

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = 125$ (0.5s)</td>
<td>81.4</td>
<td>58.3</td>
<td>85.7</td>
<td>62.4</td>
<td>46.3</td>
<td>52.3</td>
<td>84</td>
<td>88</td>
<td>83.3</td>
</tr>
<tr>
<td>$s = 250$ (1.0s)</td>
<td>86.6</td>
<td>68.2</td>
<td>91.3</td>
<td>71.0</td>
<td>54.4</td>
<td>61.6</td>
<td>90.3</td>
<td>90.1</td>
<td>88.0</td>
</tr>
<tr>
<td>$s = 375$ (1.5s)</td>
<td>91.7</td>
<td>72</td>
<td>92.3</td>
<td>71.3</td>
<td>59.1</td>
<td>61.7</td>
<td>90.8</td>
<td>93.4</td>
<td>90.3</td>
</tr>
</tbody>
</table>

Table 7.6: Classification results (in %) of SD_MBCI systems using SAM_CSP_pairs method for 9 subjects in dataset 2a of the BCI competition IV. The results are rounded to one decimal place.

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = 125$ (0.5s)</td>
<td>83.3</td>
<td>66.4</td>
<td>86.8</td>
<td>63.0</td>
<td>51.1</td>
<td>55.7</td>
<td>85.2</td>
<td>89.4</td>
<td>85.0</td>
</tr>
<tr>
<td>$s = 250$ (1.0s)</td>
<td>84.9</td>
<td>67.5</td>
<td>89.4</td>
<td>75.5</td>
<td>60.2</td>
<td>63.5</td>
<td>89.6</td>
<td>91.0</td>
<td>89.2</td>
</tr>
<tr>
<td>$s = 375$ (1.5s)</td>
<td>89.4</td>
<td>73.7</td>
<td>91.7</td>
<td>71.3</td>
<td>61.4</td>
<td>66.4</td>
<td>90.3</td>
<td>92.5</td>
<td>89.2</td>
</tr>
</tbody>
</table>

Table 7.7: Classification results (in %) of SD_MBCI systems using SAM_2PCA_ACPC method for 9 subjects in dataset 2a of the BCI competition IV. The results are rounded to one decimal place.

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s = 125$ (0.5s)</td>
<td>84.3</td>
<td>61.7</td>
<td>87.7</td>
<td>66.6</td>
<td>51.1</td>
<td>55.7</td>
<td>85.2</td>
<td>89.4</td>
<td>85.0</td>
</tr>
<tr>
<td>$s = 250$ (1.0s)</td>
<td>87.5</td>
<td>69.6</td>
<td>92.7</td>
<td>72.2</td>
<td>56.0</td>
<td>62.6</td>
<td>91.1</td>
<td>91.1</td>
<td>89.4</td>
</tr>
<tr>
<td>$s = 375$ (1.5s)</td>
<td>91.8</td>
<td>73.4</td>
<td>93.0</td>
<td>72.2</td>
<td>60.7</td>
<td>62.8</td>
<td>91.3</td>
<td>93.7</td>
<td>91.1</td>
</tr>
</tbody>
</table>
7.4 Discussion

Figure 7.13: Comparison of SD-MBCI and SI-MBCI classification results using $SAM_{CSP.1vsN}$ for 9 subjects in dataset 2a of the BCI competition IV. The accuracy differences are calculated by subtracting the results of SD-MBCI from the results of SI-MBCI. The step size 125, 250 and 375 correspond to duration of 0.5, 1 and 1.5 seconds.

Figure 7.14: Comparison of SD-MBCI and SI-MBCI classification results using $SAM_{CSP.pairs}$ for 9 subjects in dataset 2a of the BCI competition IV. The accuracy differences are calculated by subtracting the results of SD-MBCI from the results of SI-MBCI. The step size 125, 250 and 375 correspond to duration of 0.5, 1 and 1.5 seconds.
Comparison between SD-BCI and SI-BCI using
SAM_2PCA_ACPC

Figure 7.15: Comparison of SD-MBCI and SI-MBCI classification results using SAM_2PCA_ACPC for 9 subjects in dataset 2a of the BCI competition IV. The accuracy differences are calculated by subtracting the results of SD-MBCI from the results of SI-MBCI. The step size 125, 250 and 375 correspond to duration of 0.5, 1 and 1.5 seconds.

7.17 show these experimental results with the window size set to two seconds and the window step set to one half of a second in SD-MBCI systems.

It is evident that, as in previous similar experiments, aggregate models at score level enhanced the classification accuracy of the SD-MBCI systems over the corresponding non-aggregate models. The range of accuracy improvement was from 0.70% to 9.57% for SAM_Mobility and from 1.22% to 10.61% for SAM_Complexity depending on subjects as shown in Table 7.8. On average, over all nine subjects, SAM_Mobility improved the classification accuracy at about 4.85% and SAM_Complexity improved the classification accuracy at about 5.06% over Mobility and Complexity, respectively.

In comparing CSP-based and ACPC methods, although these results were still well behind the results of both non-aggregate and aggregate models of CSP-based and ACPC methods, the improvement from SAM_Mobility and SAM_Complexity was nearly double that of the aggregate models of CSP-based and ACPC methods.

For the SI-MBCI systems, aggregate models with TDP parameters did not achieve a good result. The results were just slightly higher than random guessing at about
7.4 Discussion

Figure 7.16: Comparison between non-aggregate model and aggregate model at score level using Mobility as feature in a SD-MBCI system. The window size parameter is set two seconds. The window step parameter is set at one half of a second.

Figure 7.17: Comparison between non-aggregate model and aggregate model at score level using Complexity as feature in a SD-MBCI system. The window size parameter is set to two seconds. The window step parameter is set at one half of a second.
Table 7.8: Improvement of classification accuracy (in percent) of $SAM_Mobility$ and $SAM_Complexity$ over their non-aggregate methods. Positive numbers represent better results, whereas negative numbers mean worse results. The results are rounded to two decimal places. The window size parameter is set to two seconds. The window step parameter is set to one half of a second.

<table>
<thead>
<tr>
<th>Method</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SAM_Mobility$</td>
<td>3.65</td>
<td>2.96</td>
<td>5.04</td>
<td>0.70</td>
<td>8.17</td>
<td>9.57</td>
<td>3.30</td>
<td>2.43</td>
<td>7.82</td>
</tr>
<tr>
<td>$SAM_Complexity$</td>
<td>2.26</td>
<td>5.74</td>
<td>2.43</td>
<td>6.78</td>
<td>10.61</td>
<td>3.13</td>
<td>1.22</td>
<td>7.82</td>
<td>2.61</td>
</tr>
</tbody>
</table>

35%.

7.4.4 Fixed segmentation and dynamic segmentation in aggregate models at feature level

Although the aggregate models at score level achieved much improvement in the classification accuracy of both the SD-MBCI and SI-MBCI systems, the aggregate models at feature level, which corresponded to boosting models did not achieve; they performed even be worse than the non-aggregate models. Clearly, there were two highly important parameters which affected the classification accuracy of the systems. They are the window size w and window step s parameters. This section discusses these two important parameters and their effect on the classification accuracy of MBCI systems.

In the last experiments, the two parameters, window size w and window step s, were fixed by predefined values. This led to a small number of windows, which boosting algorithms could handle to select features. In the following experiments, a different approach was tried by creating the window position and window size randomly. In other words, instead of setting fixed segmentation, dynamic segmentation was tried. This model was called dynamic segmentation aggregate model at feature level (DFAM). In this new model, a parameter named $numLocal$ was introduced to control the number of segments used in FAM models. Specifically, for each segment among the $numLocal$ segments extracted from a trial, the window size was randomly
selected from 2 seconds to 3 seconds with a step of 0.2 second and, the window position randomly generated within the trial. The FAM models were applied in the same way as in the previous experiments on these segments. To see the effect of the number of segments on classification accuracy, the values of this parameter were varied from 5 to 50 with a step of 5.

The results of these experiments for SI-MBCI systems are shown in Figs. 7.18, 7.19 and 7.20.

![Classification results of FAM CSP 1vsN with dynamic segmentation in SD-BCI systems](image)

Figure 7.18: Classification results of \textit{DFAM CSP 1vsN} in SD-MBCI systems for 9 subjects in dataset 2a of the BCI competition IV. The window size is randomly selected from a range of 2 seconds to 3 seconds with a step of 0.2 seconds. The window position is randomly generated within the trial. The number of segments ranges from 5 to 50 with a step of 5.

There are two things that can be derived from the results presented in Figs. 7.18, 7.19 and 7.20 for SD-MBCI systems. Firstly, there is not much difference in the results of the different values of the number of segments parameter. Secondly, when comparing the results of the fixed segmentation FAM models, there is also not much difference between them. Figs. Figs. 7.21, 7.22 and 7.23 show typical results when DFAM models are compared with their corresponding FAM models. In these figures, DFAM is showed with 5 segments. These results show that DFAM is slightly better than the corresponding FAM for some subjects while FAM is slightly better than the corresponding DFAM for others. In other words, there was really
7.4 Discussion

Figure 7.19: Classification results of `DFAM_CSP_pairs` in SD-MBCI systems for 9 subjects in dataset 2a of the BCI competition IV. The window size is randomly selected from a range of 2 seconds to 3 seconds with a step of 0.2 seconds. The window position is randomly generated within the trial. The number of segments ranges from 5 to 50 with a step of 5.

Figure 7.20: Classification results of `DFAM_2PCA_ACPC` in SD-MBCI systems for 9 subjects in dataset 2a of the BCI competition IV. The window size is randomly selected from a range of 2 seconds to 3 seconds with a step of 0.2 seconds. The window position is randomly generated within the trial. The number of segments ranges from 5 to 50 with a step of 5.
no difference between $DFAM$ and FAM. This observation was confirmed by taking an average over nine subject results as shown in Table 7.9. The differences were less than 1% and quite small. It was noted that $DFAM$ models have more computation cost than corresponding FAM models.

Figure 7.21: Comparison between FAM_{CSP_1vsN} and its corresponding $DFAM_{CSP_1vsN}$ with 5 dynamic segments in SD-MBCI systems for 9 subjects in dataset 2a of the BCI competition IV. The window size is randomly selected from a range of 2 seconds to 3 seconds with a step of 0.2 seconds. The window position is randomly generated within the trial. The number of segments ranges from 5 to 50 with a step of 5.

Similar evaluations can be made regarding the subject-independent MBCI experiments. In conclusion, there is not much difference between fixed segmentation and dynamic segmentation aggregate models at feature level in the experiments conducted with both SD and SI MBCI systems.

7.4.5 Toward online multi-class BCI systems

It is easy to see that the proposed general aggregate models at score level in Fig. 6.3 can be extended to handle online multi-class BCI systems with little modification and little additional processing time. Excluding the parameters of feature extraction methods and classifiers, the method proposed here introduces only two additional
7.4 Discussion

Figure 7.22: Comparison between \textit{FAM_CSP_pairs} and its corresponding \textit{DFAM_CSP_pairs} with 5 dynamic segments in SD-MBCI systems for 9 subjects in dataset 2a of the BCI competition IV. The window size is randomly selected from a range of 2 seconds to 3 seconds with a step of 0.2 seconds. The window position is randomly generated within the trial. The number of segments ranges from 5 to 50 with a step of 5.

Table 7.9: Average results of \textit{DFAM} models over nine subjects and their corresponding \textit{FAM} models. The differences is taken by taking the absolute of the subtraction of the result of \textit{FAM} models from the results of \textit{DFAM} models. The results are in percentages and rounded to two decimal places.

<table>
<thead>
<tr>
<th>Method</th>
<th>FAM</th>
<th>DFAM</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSP_1vSN</td>
<td>58.54</td>
<td>59.28</td>
<td>0.74</td>
</tr>
<tr>
<td>CSP_pairs</td>
<td>59.79</td>
<td>59.53</td>
<td>0.26</td>
</tr>
<tr>
<td>2PCA_ACPC</td>
<td>61.54</td>
<td>60.78</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Figure 7.23: Comparison between \textit{FAM_2PCA_ACPC} and its corresponding \textit{DFAM_2PCA_ACPC} with 5 dynamic segments in SD-MBCI systems for 9 subjects in dataset 2a of the BCI competition IV. The window size is randomly selected from a range of 2 seconds to 3 seconds with a step of 0.2 seconds. The window position is randomly generated within the trial. The number of segments ranges from 5 to 50 with a step of 5.
parameters, namely window size w and window step s. This proposed method is independent with feature extractors such as CSP-based or ACPC analysis and classifiers such as SVM. CSP-based analysis and SVM were adopted in these experiments because they are state-of-the-art methods in motor imagery-based BCI systems. Moreover, the window size parameter is similar to the trial length parameter. This means that whether using the proposed method or not, it was still necessary to determine this parameter. In short, the proposed method adds only one more parameter namely the window step s.

On the matter of complexity of computation in online multi-class BCI systems, the proposed method is very efficient. As shown in Fig. 6.3, assuming that K frames were needed for making a decision, from the $(K + 1) - th$ frame onwards, the results obtained from the previous $K - 1$ frames could be reused. It only needs to extract feature and perform classification on the K-th frame. The computation cost for the aggregate function is not significant as shown in Eq. 6.2 in Chapter 6, and hence the computation cost from the $(K + 1) - th$ frame onwards is nearly the same as that in a non-aggregate model which only depends on the computation cost for feature extraction and classification methods. For some first frames, due to the lack of sufficient number of frames for the aggregate function, some boundary handling techniques can be applied.

In summary, with only one additional parameter and a very small difference in the computation costs between the proposed aggregate model and other non-aggregate models, the general aggregate model at score level can easily be implemented in online multi-class BCI systems.
Chapter 8

Conclusions and Future Research

8.1 Conclusions

This thesis has presented the research on new feature extraction methods for motor imagery-based multi-class BCI systems. The research was limited on BCI systems which use EEG as an brain signal acquisition method. The research has sought to know whether interaction between channels can result in features that can achieve better classification accuracy than of features which are extracted from individual channels in motor imagery-based MBCI systems. A review of state-of-the-art feature extraction methods in motor imagery-based BCI systems led to the decision to use the methodology of using information of interaction between channels for building spatial filters in order to enhance spatial quality of brain signals. Such spatial filters in 2-class BCI systems are well defined but have still not been solved in multi-class BCI systems. Solving problems on multi-class BCI systems relies on several vital questions. The study tried to answer three of these questions:

1. How can we build a feature extraction method based on synchronization measures that targets multi-class BCI systems directly instead of through a set of 2-class problems?

2. How can we build a feature extraction method that overcomes the issue of large inter-subject and inter-session variability in multi-class BCI systems?

3. What is the difference in performance between subject-dependent and subject-
8.1 Conclusions

independent MBCI systems? What feature extraction methods can be used in subject-independent MBCI systems for enhancing performance? What models can be used in both subject-dependent and subject-independent MBCI systems?

On the way to finding answers for these questions, the research proposed two new feature extraction methods. The first proposed method is called Approximation Common Principal Components analysis (ACPC). In order to materialize this method, two specific methods were proposed called Jacobian-based Approximation Common Principal Components (Jacobi ACPC) and 2-PCA Approximation Common Principal Components (2PCA ACPC). While the Jacobi ACPC method is an extension of a well known diagonalization based on the Jacobian rotation, the 2PCA ACPC attempts to form new perpendicular components by approximating all original components of input brain signals. The second proposed method is based on aggregate models. Specifically, two general aggregate models were proposed: one at score level and one at feature level. Theoretical background of the two proposed methods were presented in Chapters 4 and 6, respectively. Experiments of these two feature extraction methods were conducted on a well known and widely used dataset for multi-class BCI systems, namely the Dataset 2a of the BCI Competition IV. This dataset is well suited to not only multi-class BCI systems but also multi-subject BCI experiments, and for both subject-dependent and subject-independent systems. The experimental findings are chapter specific, shown in Chapters 5 and 7. In this section, the experimental findings are synthesized to answer the study’s research questions.

1. How can we build a feature extraction method based on synchronization measures that targets multi-class BCI systems directly instead of through a set of 2-class problems?

2PCA ACPC directly targets multi-class BCI systems by approximating components of original brain signals. 2PCA ACPC explores the correlation between the channels of input brain signal to enhance the spatial quality of the signal, and then extracts features. This is done directly with provided data which has more than two classes. It is different from other methods that are based on 2-class problem solvers. Such methods try to solve a multi-class problem by converting it into several 2-class sub-problems, solving them separately and then combining the sub-problem solutions to form a solution to the original multi-class problem. Two typical strategies of this conversion are
One-versus-the-rest (1vsN) and pair-wise (pairs). They both can actually be called Union-based Common Principal Components analysis due to the fact that they form components of sub-problems separately and then take the union of all of them together. In experiments, Common Spatial Patterns (CSP), which is a state-of-the-art method for motor imagery-based 2-class BCI system, was chosen as the 2-class problem solver. The study compared \(2PCA_{ACPC}\) with \(CSP_{1vsN}\) and \(CSP_{pairs}\). It also compared \(2PCA_{ACPC}\) with another feature extractor based on individual channels called Time Domain Parameters. The study found that the \(2PCA_{ACPC}\) method achieved better classification results than the two CSP-based methods in eight out of nine subjects. The classification accuracy improvement ranged from 1% to 10% depending on the subject. On average over all nine subjects participating in the experiment, \(2PCA_{ACPC}\) improved about 3.5% compared with \(CSP_{1vsN}\) and about 4.1% compared with \(CSP_{pairs}\). It is evident that both ACPC methods significantly outperformed two time domain features Mobility and Complexity on all subjects. When compared with TDP features, the classification accuracy improvement ranged from 11% to 23% for \(2PCA_{ACPC}\). Overall, \(2PCA_{ACPC}\) improved about 16.6% compared with TDP features on average, over all nine subjects participating in the experiment. These findings show that \(2PCA_{ACPC}\), which is based on multi-channel information not only is better than a typical individual channel features such as TDP but also outperforms other 2-class solver-based strategies employing CSP, a state-of-the-art method for motor imagery-based 2-class BCI systems. Another advantage of \(2PCA_{ACPC}\) is that it can be visualized based on its components’ coefficients. This property helps researchers explain how \(2PCA_{ACPC}\) operates when extracting features from brain signals.

2. How can we build a feature extraction method that overcomes the issue of large inter-subject and inter-session variability in multi-class BCI systems?

Two general aggregate models were proposed for the purpose of dealing with the high inter-subject and inter-session variability in multi-class BCI systems. The first is called aggregate model at score level (SAM). The second is called aggregate model at feature level (FAM). The main idea of these general aggregate models is that they treat a trial as a set of possibly overlapped segments instead of as a whole trial. By this means, these aggregate models can eliminate the effects of the delay
and activation issue which is a well known main factor in making high inter-subject and inter-session variability in multi-class BCI systems. These two general models can be used with all existing features. The research experimented with these two models using CSP-based, 2PCA_ACP and TDP methods for extracting features. Experimental results show that the aggregate models with these features at score level are better than, or at least equal to, their corresponding non-aggregate models for most subjects in the dataset 2a of the BCI competition IV used in the experiments. On average, over all nine subjects, the aggregate models at score level of CSP_1vsN, CSP_pairs and 2PCA_ACP improved about 2.4%, 2.9% and 2.0% respectively over their original methods. For single-channel features such as TDP, on average over all nine subjects, SAM_Mobility improved the classification accuracy about 4.9% and SAM_Complexity improved the classification accuracy about 5.1% over Mobility and Complexity, respectively.

3. What is the difference in performance between subject-dependent and subject-independent MBCI systems? What feature extraction methods can be used in subject-independent MBCI systems for enhancing performance? What models can be used in both subject-dependent and subject-independent MBCI systems?

From current knowledge of the basic principles of aggregate models and the nature of brain signals, the research proved that aggregate models can be used not only in SD-MBCI but also in SI-MBCI systems. The experimental results in SI-MBCI were fairly consistent with those in SD-MBCI. While the aggregate models at score level showed higher classification accuracy than their corresponding non-aggregate models, the aggregate models at feature level showed much lower classification accuracy. The best improvement of classification was with SAM_2PCA_ACP compared with its corresponding non-aggregate model SAM_2PCA_ACP which was about 4.77%. SAM_CSP_1vsN and SAM_CSP_pairs enhanced about 1.15% and 2.93% over CSP_1vsN and CSP_pairs, respectively. To the best of the author’s knowledge, this is the first study conducting experiments with SI-MBCI systems. The experiments using the proposed methods on SI-2MBCI showed that aggregate models were better than the non-aggregate models and the non-aggregate models were better than those reported by Lotte et. al. [Lotte et al., 2009]. Two one-way ANOVA tests on
8.1 Conclusions

factor of step size s showed that there was a significant difference between the values of the step size s. Therefore, with an appropriate selection of the window step parameter, the aggregate models at score level achieved notably higher classification accuracy results than the corresponding non-aggregate models.

Although aggregate models can reduce the effects of high inter-subject and inter-session variability in SI-MBCI systems, the problem of SI-MBCI systems were still more complicated than the one of SD-MBCI systems. The classification results using aggregate models in SD-MBCI systems were greater than with SI-MBCI systems. This conclusion was confirmed with experimental results in 2-class BCI systems. The range of accuracy differences between SD-BCI and SI-BCI systems was very high from 0.0% to 28.2% depending on step size s, subjects and aggregate models.

Finding answers for these research questions led to the development of a new feature extraction method, one in which a spatial filters method is used in a aggregate model. This new method can be called segmented spatial filters. The spatial filters method, which is based on the multi-variate model, has been proven to have advantages over univariate models in motor imagery-based BCI systems. Inheriting advantages from the spatial filters and aggregate models, the segmented spatial filters method can further enhance the performance of motor imagery-based BCI systems. It has the following advantages:

- It improves the spatial resolution of EEG signals;
- It efficiently deals with inter-subject and inter-session variability in brain signals;
- It can be visualized so that it can be interpreted by researchers;
- It can be used in both subject-dependent and subject-independent BCI systems;
- It is very efficient and straight forward to apply in online BCI systems from a corresponding off-line version.

Specifically, for the proposed method $ACPC$ which directly targets multi-class BCI systems, the experimental investigation showed that the segmented $ACPC$ method has all the above-listed advantages for multi-class BCI systems.
8.2 Future research

Given the results and drawing on the discussions reported in this study, three directions are clearly evident for future research. They are

- Extending aggregate models in order to handle the problem of brain signal segmentation. As shown in the study and indicated in other related research, subjects can lose their attention during BCI experiments. This means that not all data in the trial is meaningful and helpful. Brain signal segmentation can extract meaningful and helpful portions of the trial. This direction has gained attention from brain signal researchers in epilepsy detection. From this research it has been clear that BCI researchers also need to focus on the brain signal segmentation problem.

- Designing motor imagery-based BCI systems with longer experimental time periods. The effect of high inter-subject and inter-session variability has forced motor imagery-based BCI system designers to use short durations in their experiments. Using aggregate models and segmented spatial filters, this effect can be reduced. Therefore, experiment designers now can extend the duration of the experiments. It is the first step towards truly streaming BCI systems.

- Testing and developing aggregate models with other features relevant to other BCI problems. This study focuses on the motor imagery-based BCI problem only. In a motor imagery-based BCI system, subjects are asked to concentrate on interacting with devices. This property makes aggregate models suitable for motor imagery-based BCI systems. However, in different BCI systems where other control signals are used, this property might not be kept. Therefore, aggregate models need to be modified to adapt to the new properties of these BCI systems.
Appendices

Corollary 1. Given a real symmetrical matrix A and a basic Jacobi rotation matrix R. Let B be the resulted matrix after applying the Jacobi rotation. There is no difference between the Frobenius norms of the two matrices. It means that

$$||B||_F = ||A||_F. \quad (8.1)$$

Proof. As definition of the Jacobi rotation, we have:

$$B = R^T AR \quad (8.2)$$

The Frobenius norm is defined as

$$||A||_F = \sum_{i,j} A_{i,j}^2 = \text{trace}(AA^T) \quad (8.3)$$

where A is a symmetrical matrix. Therefore,

$$||B||_F = ||R^T AR||_F \quad (8.4)$$

$$= \text{trace}((R^T AR)(R^T AR)^T) \quad (8.5)$$

$$= \text{trace}(A)\text{trace}((A)^T) \quad (8.6)$$

$$= ||A||_F \quad (8.7)$$

\[\square\]

Corollary 2. Given a real symmetrical matrix A and a basic Jacobi rotation matrix R at the row p and the column q. Let B be the resulted matrix after applying the Jacobi rotation. Let $S(.)$ be the function of the sum of square of all off-diagonal elements of a matrix. Then we have,

$$S(B) = S(A) - 2 \times |A_{p,q}|^2 \quad (8.8)$$
Proof. Let A' and B' be the matrix just contain only four elements of the matrix A and B respectively. Let $c = \cos \theta$ and $s = \sin \theta$. Without any loss, the matrix manipulation can be reduced by applying the rotation matrix R on the matrix A as follows.

\[
\begin{pmatrix}
B_{p,p} & B_{p,q} \\
B_{q,p} & B_{q,q}
\end{pmatrix} = \begin{pmatrix}
\cos \theta & \sin \theta \\
-s\sin \theta & \cos \theta
\end{pmatrix} \begin{pmatrix}
A_{p,p} & A_{p,q} \\
A_{q,p} & A_{q,q}
\end{pmatrix} \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}
\]

(8.9)

\[
= \begin{pmatrix}
cA_{p,p} + sA_{q,p} & cA_{p,q} + sA_{q,q} \\
-sA_{p,p} + cA_{q,p} & -sA_{p,q} + cA_{q,q}
\end{pmatrix} \begin{pmatrix}
c & -s \\
s & c
\end{pmatrix}
\]

(8.10)

\[
= \begin{pmatrix}
c^2A_{p,p} + s^2A_{q,q} + scA_{p,q} + scA_{q,p} & -csA_{p,p} + csA_{q,q} + c^2A_{p,q} - s^2A_{q,p} \\
-scA_{p,p} + csA_{q,q} - s^2A_{p,q} + c^2A_{p,q} & s^2A_{p,p} + c^2A_{q,q} - csA_{p,q} - csA_{q,p}
\end{pmatrix}
\]

(8.11)

\[
= \begin{pmatrix}
c^2A_{p,p} + s^2A_{q,q} + 2scA_{p,q} & cs(A_{q,q} - A_{p,p}) + A_{p,q}(c^2 - s^2) \\
C(A_{q,q} - A_{p,p}) + A_{p,q}(c^2 - s^2) & s^2A_{p,p} + c^2A_{q,q} - 2csA_{p,q}
\end{pmatrix}
\]

(8.12)

Eliminating off-diagonal elements means that $B_{p,q} = B_{q,p} = 0$. Therefore,

\[
\cos \theta \sin \theta (A_{q,q} - A_{p,p}) + (\cos^2 \theta - \sin^2 \theta)A_{p,q} = 0
\]

(8.13)

\[
\Leftrightarrow \cos 2\theta A_{p,q} + \frac{1}{2} \sin 2\theta (A_{q,q} - A_{p,p}) = 0
\]

(8.14)

\[
\Leftrightarrow \tan 2\theta = \frac{-2A_{p,q}}{A_{q,q} - A_{p,p}}
\]

(8.15)

The appropriate value of the angle θ in the Jacobi rotation matrix is given by the Eq. 8.15. Moreover, because there is no difference between the Frobenius norms of the two matrices A and B, proven in Corollary 1, we have $S(A) - S(B) = A^2_{i,j} + A^2_{j,i} = 2A^2_{i,j}$. \hfill \Box

Lemma 1. Given a real symmetrical matrix C^t_i and a basic Jacobi rotation matrix $R(p,q,\theta)$, with appropriate value of θ, the sum of non-diagonal elements S^t_i can be reduced by $2 \times |C^t_i(p,q)|^2$. It means that

\[
S^t_{i+1} = S^t_i - 2 \times |C^t_i(p,q)|^2
\]

(8.16)

Proof. The lemma is directly proven by replacing the matrix C^t_i by A, the matrix C^t_{i+1} by B, the Jacobi rotation matrix $R(p,q,\theta)$ by R, and the function S^t_i, S^t_{i+1} by the function $S(A)$, $S(B)$ respectively, according to Corollary 2. \hfill \Box
My Research Publications

2. Tuan Hoang, Dat Tran, Xu Huang. Approximation-based Common Principal Component for feature extraction in Multi-class Brain-Computer Interfaces. The 35th Annual International Conference of the IEEE EMBS (EMBC 2013), July, 2013.

3. Tuan Hoang, Dat Tran, Xu Huang and Wanli Ma. A General Aggregate Model for Improving Multi-Class Brain-Computer Interface Systems Performance. The International Joint Conference on Neural Networks (IJCNN) 2013.

5. Tuan Hoang, Dat Tran, Khoa Truong, Phuoc Nguyen, Xu Huang, Dharmendra Sharma, Toi Vo. Experiments on Synchronous Nonlinear Features for 2-Class NIRs-based Motor Imagery Problem. The 4th International Conference on The Development of Biomedical Engineering, 2012.

6. Tuan Hoang, Dat Tran, Xu Huang, Dharmendra Sharma, Khoa Truong, Toi Vo. High order moment features for NIRs-based classification problems. The 4th International Conference on The Development of Biomedical Engineering, 2012.

7. Phuoc Nguyen, Dat Tran, Trung Le, Tuan Hoang and Dharmendra Sharma. Multi-Sphere Support Vector Data Description for Brain-Computer Interface.

10. Tuan Hoang, Dat Tran, Phuoc Nguyen, Xu Huang, Dharmendra Sharma. Experiments on Using Combined Short Window Bivariate Autoregression for EEG Classification. The 5th International IEEE EMBS Conference on Neural Engineering, NER 2011, Mexico, 2011.
Bibliography

[Belouchrani et al., 1997] Belouchrani, A., Abed-meraim, K., Cardoso, J.-F., Moulines, E., Member, I., Member, I., Member, I., and Member, I. (1997). A blind source separation technique using second order statistics.

and tetraplegic patients during a motor imagery task. *Comp. Int. and Neurosc.*, 2009.

http://neurosky.com/.

