A Novel Development Methodology for Cooperative, Distributed Multi-agent Systems

Ebrahim Fahad Al-Hashel

Master of Science in Computer Science (University of Sheffield – UK)

FACULTY OF INFORMATION SCIENCES AND ENGINEERING
UNIVERSITY OF CANBERRA
AUSTRALIA

This dissertation is submitted in fulfilment of the requirements for the award of the degree doctor of philosophy

November 2010
Abstract

The multi-agent systems (MaS) typology can be divided into “independent” and “cooperative” or closed and open respectively. Independent MaS embraces a set of agents linked together by predefined protocols that operate in a closed central control system. The closed system does not include or perform MaS dynamic behaviour; rather, it mainly performs agent team formation processes and promotes agents’ cooperation at runtime. This type of MaS is appropriate for application within fixed procedures that operate in one system boundary. In contrast, the cooperative MaS is an emergent system that has the potential to dynamically, at runtime, search in an open distributed computational environment and subsequently form a team of appropriate agents to achieve the defined goal. The agent cooperation behaviour is a key strength of MaS, which is characterised by agents’ autonomy.

This thesis investigates existing multi-agent system development methodologies: Prometheus, Gaia, MaSE, PASSI and Tropos. The results indicate that these methodologies are engineering an independent MaS focusing on the agent’s internal structure or system architecture through interaction protocols. However, the cooperative MaS development processes are minimally realised in these methodologies and the agent cooperation process is not implicitly addressed.

Further, the research aims to enhance MaS development methodology by proposing a novel development methodology for multi-agent systems (DMMAS) that can guide software practitioners in developing cooperative MaS with the ability to function in large-scale, open, distributed, incremental, heterogeneous systems. It is motivated by distributed architecture for problem solving in domains including military logistics, healthcare, transportation and travel agency systems. The research attempts to transition existing MaS from independent concepts to cooperative concepts.

To model agent autonomous behaviour, the research proposes a new organisational multi-agent systems architecture supported by an ontology-based search model and the agent cooperation, through dynamic team formation process is built on agent
adoptive strategy and Share Plan cooperation theory as an important characteristic of DMMAS.

The research has been conducted using design science in information system research method, and the case study research approach. For proof of the concept the research applied DMMAS development methodology on a real world case study “Travel Agency System (TAS)” which served as the motivating problem for the research work. The results are evaluated using a benchmark approach to compare DMMAS performance with the five existing MaS development methodologies.

This thesis makes four main contributions: first, it enhances the agent-based system by providing a new development methodology with an attempt to develop the multi-agent systems current state of the art from independent to cooperative. Secondly, the research presents new multi-agent systems architecture and a methodology on how to design and develop open distributed multi-agent systems. Thirdly, the research proposes how ontology analysis and design can be incorporated in software engineering practice. The research explains how ontology concepts, objects and relationships are identified to build the agent systems domain. Finally, the research introduces a new agent functionality ontology schema for a search to replace the agent name keyword based conventional search. The functionality based ontology approach utilises descriptor based semantics.

The proposed DMMAS design methodology is evaluated against software engineering principles and its strengths and inadequacies investigated. The research achievements are summarised and emerging research questions are outlined for future work.
Acknowledgement

To H.E. Major General Dr. Sheikh / Mohammed bin Abdulla Al Khalifa, Minister of State for Defence Affairs. You are an extra ordinary person; your leadership has guided me to achieve this work.

To my supervisor Professor / Dharmendra Sharma, thanks for being so kind and so supportive. His guidance is crucial to this thesis, and the will to drive the research forward.

To my brother Yousif Al-Hashel, thanks for the support and continues asking.

To my brother in life Brigadier General / Ali bin Sager Al-Nuaimi, I appreciate the efforts and the support you offered to me to make this work possible.

To Jennifer Bradley, thanks for the effort you contributed to edit this thesis.

To Dr. / Masoud Mohammadian, Mr. / Robert Cox, Dr. / Bala Balachandran, Dr. / Wanli Ma, thanks for the encouragements.

To my best friends in Australia Sisira Adikari, and Patrick Collin, stay in contact I enjoy yours friendships.
Dedication

To my family:

My wife: Anissa Al-Rowaie
My sons: Ahmed and Sufyan

Yours truly, love and patience, yours constant encouragement and support provided a solid result. Being away from you was a tough time, all what I have done was for a better life.

To my parents:

Fahad Al-Hashel and Amina Al-Thawadi
Table of Contents

Chapter 1 Introduction .. 1
1.1 Background and Motivation ... 1
1.2 Why a New Methodology ... 3
1.3 Research Aims and Objectives ... 5
1.4 Research Questions ... 6
1.5 Hypothesis ... 6
1.6 Research Methodology .. 7
1.7 Thesis Outline .. 12

Chapter 2 Agents and Software Engineering: A Review 14
2.1 Introduction ... 14
2.2 Agents 14
 2.2.1 Agent Typology .. 16
 2.2.2 Agent versus Object ... 17
 2.2.3 Agent Architecture ... 21
2.3 Multi-agent Systems .. 25
2.4 Agent Cooperation Concept and Theories .. 27
2.5 Other Collaboration Models ... 32
2.6 Team Formation Process ... 33
2.7 Agent Negotiation ... 35
2.8 Agent Coordination .. 38
2.9 Ontologies ... 40
2.10 Ontologies in Software Engineering ... 41
2.11 Software Engineering Development Methodology 44
 2.11.1 Waterfall Approach ... 45
 2.11.2 Incremental Approach ... 46
 2.11.3 Formal Specification Method ... 47
2.12 Existing Agent-based Development Methodologies 49
 2.12.1 Agent-UML .. 51
 2.12.2 Prometheus ... 51
 2.12.3 PASSI ... 54
 2.12.4 Gaia .. 55
 2.12.5 MaSE ... 57
2.12.6 Inadequacies in the Existing Development Methodologies 60
2.13 Agent Communication Languages .. 62
 2.13.1 Knowledge and Query Manipulation Language (KQML) 63
 2.13.2 FIPA Agent-Communication Language (FIPA-ACL) 65
 2.13.3 Knowledge Interchange Format Language 66
2.14 Agent Software Development Platform .. 67
 2.14.1 Java Agent Development Environment (JADE) 68
 2.14.2 JACK .. 69
 2.14.3 Aglet .. 70
 2.14.4 Cougaar ... 71
2.15 Summary ... 73

Chapter 3 A Review of Existing Agent-based Software Engineering

 Methodologies .. 75
3.1 Introduction .. 75
3.2 Travel Agency System: Motivating Problem 75
3.3 Prometheus, MaSE and Gaia ... 76
 3.3.1 Selection of Prometheus, MaSE, and Gaia 76
 3.3.2 Prometheus ... 77
 3.3.3 MaSE ... 81
 3.3.4 Gaia ... 84
3.4 Comparison of Results .. 88
3.5 Inadequacies in Existing Development Methodologies 90
3.6 Summary .. 92

Chapter 4 DMMAS: A Novel Development Methodology for Multi-agent Systems ... 94

 4.1 Introduction .. 94
 4.2 DMMAS Criteria ... 94
 4.3 DMMAS Applications Domains .. 96
 4.4 DMMAS Architecture .. 98
 4.5 System Requirements ... 103
 4.5.1 System Requirements: High-level 104
 4.5.2 System Requirement: Goals Analysis 105
 4.6 System Specification ... 109
 4.6.1 DMMAS Cooperation Architecture 110
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2</td>
<td>Identify the System Organisation Structure</td>
<td>113</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Ontology Design Consideration</td>
<td>118</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Ontological Analysis</td>
<td>119</td>
</tr>
<tr>
<td>4.7</td>
<td>System Architecture Design</td>
<td>128</td>
</tr>
<tr>
<td>4.8</td>
<td>Detailed Design</td>
<td>145</td>
</tr>
<tr>
<td>4.9</td>
<td>Summary</td>
<td>158</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Travel Agency System: A Case Study</td>
<td>160</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>160</td>
</tr>
<tr>
<td>5.2</td>
<td>Travel Agency System</td>
<td>160</td>
</tr>
<tr>
<td>5.3</td>
<td>TAS Requirement Analysis</td>
<td>165</td>
</tr>
<tr>
<td>5.4</td>
<td>TAS Specification Analysis Phase</td>
<td>170</td>
</tr>
<tr>
<td>5.5</td>
<td>TAS Architecture Design</td>
<td>186</td>
</tr>
<tr>
<td>5.6</td>
<td>TAS Detailed Design</td>
<td>199</td>
</tr>
<tr>
<td>5.7</td>
<td>Summary</td>
<td>216</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Evaluation and Assessment</td>
<td>217</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>217</td>
</tr>
<tr>
<td>6.2</td>
<td>The Evaluation Framework</td>
<td>217</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Process Related Criteria</td>
<td>218</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Technique-Related Criteria</td>
<td>221</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Model-Related Criteria</td>
<td>224</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Supportive-Feature Criteria</td>
<td>226</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of Concepts</td>
<td>228</td>
</tr>
<tr>
<td>6.4</td>
<td>DMMAS Strengths and Limitations</td>
<td>231</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary</td>
<td>235</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Conclusion and Future Work</td>
<td>237</td>
</tr>
<tr>
<td>7.1</td>
<td>Main Contributions</td>
<td>239</td>
</tr>
<tr>
<td>7.2</td>
<td>Research Questions</td>
<td>240</td>
</tr>
<tr>
<td>7.3</td>
<td>Limitations</td>
<td>242</td>
</tr>
<tr>
<td>7.4</td>
<td>Future Work</td>
<td>243</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appendix A: XML and XML-Schema Selected Code for Goal and Skill-agent</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>Appendix B: Ontology Selected Code for Skill-agent Functionality</td>
<td>269</td>
<td></td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1: Information system research framework (Hevner et al., 2004) 8
Figure 1.2: Research methodology diagram in context of Henver’s model 10
Figure 1.3: The generate/test cycle (Simon, 1996) 11
Figure 2.1: Part view of an agent typology (Nwana, 1996). 16
Figure 2.2: Two aspect of autonomy (Odell, 2002). 19
Figure 2.3: The BDI architecture ... 22
Figure 2.4: Horizontal layer ... 23
Figure 2.5: One-pass and two-pass layer ... 23
Figure 2.6: Subsumption architecture for robot navigation (Rodney, 1986). 24
Figure 2.7: Cooperation typology (Doran et al., 1996b) 27
Figure 2.8: Waterfall approach lifecycle .. 45
Figure 2.9: Evolutionary delivery process .. 46
Figure 2.10: Categorisation of AOSE methodologies 50
Figure 2.11: Prometheus architecture ... 52
Figure 2.12: The models and phases of the PASSI methodology 54
Figure 2.13: Model of the Gaia methodology (Hederson-Sellers and Giorgini, 2005) ... 56
Figure 2.14: MaSE overview diagram ... 58
Figure 2.15: The three layers of the KQML communication language 64
Figure 2.16: JADE architecture (Bellifemine et al., 2007b) 68
Figure 2.17: Relationship between Prometheus construct and JACK abstract 70
Figure 2.18: BlackboardService API Internal Concepts (BBN, 2004b) 71
Figure 3.1: Prometheus functionality diagram for TAS 77
Figure 3.2: Prometheus data coupling ... 78
Figure 3.3: Prometheus capability diagram .. 79
Figure 3.4: Prometheus interaction diagram .. 80
Figure 3.5: TAS role diagram produced during the analysis process 82
Figure 3.6: Agent class, agent information, and their conversation diagram 83
Figure 3.7: TAS organisations structure diagram 85
Figure 3.8: TAS Role schema for BookRoom 86
Figure 3.9: TAS book a room protocol .. 87
Figure 4.32: *Skill-agent* detailed design diagram. ... 149
Figure 4.33: *Professional-agents* detailed design diagram. 151
Figure 4.34: XML Schema for system goals. ... 153
Figure 4.35: Goal execution plan detailed design. ... 154
Figure 4.36: Screenshot for multi-agent systems components database (Achieving PhD example). ... 155
Figure 4.37: Example for SQL statement to retrieve user goal execution table. 156
Figure 4.38: AUML interaction diagram for *skill-agent" Enrolment"* example. 157
Figure 5.1: TAS main components. .. 161
Figure 5.2: Numbers of skill-agents team in TAS. ... 165
Figure 5.3: High level TAS over view including system external entities. 166
Figure 5.4: TAS context diagram. .. 167
Figure 5.5: TAS goals diagrams. ... 167
Figure 5.6: Goal descriptor for Flight Reservation. ... 168
Figure 5.7: Goal descriptor for Hotel Booking. .. 169
Figure 5.8: Goal descriptor for Car Rental. ... 170
Figure 5.9: TAS Professional-agent. ... 171
Figure 5.10: TAS skill-agents. .. 171
Figure 5.11: TAS skill-agent team graph. .. 172
Figure 5.12: TAS goal execution plan descriptor. ... 173
Figure 5.13: TAS alternative plan descriptor. ... 174
Figure 5.14: TAS organisation structure. .. 175
Figure 5.15: Flight Reservation skill-agent data model. ... 176
Figure 5.16: Hotel Booking skill-agent data model. ... 177
Figure 5.17: Car Rental skill-agent data model. ... 178
Figure 5.18: TAS ontology scope. ... 179
Figure 5.19: Input-status and Output-status within each TAS skill-agent. 180
Figure 5.20: Domain and scope ontology descriptor for TAS. 181
Figure 5.21: Flight Reservation skill-agent domain objects diagram. 182
Figure 5.22: HotelBooking skill-agent domain object diagram. 183
Figure 5.23: Car Rental skill-agents domain object diagram. 184
Figure 5.24: Flight Reservation skill-agent transition status. 185
Figure 5.25: Hotel Booking skill-agent transition status. ... 185
Figure 5.26: Car Rental skill-agent transition status. ... 186
List of Tables

Table 2.1: Illustration of cooperation in AOSE..61
Table 2.2: FIPA ACL Message Parameters...66
Table 3.1: Development phase details assessment...88
Table 3.2: Presents the measure of an agent concept that each methodology supports.
..88
Table 3.3: Shows the scale of the modelling criteria within each methodology........89
Table 3.4: Compares the properties of the methodologies..89
Table 3.5: Illustrates the available activities in each development phase...............89
Table 3.6: Types of system domain for each methodology.......................................90
Table 3.7: Software development tools support...90
Table 3.8: Inadequacies in methodologies inadequacies with respect to the TAS case
 study...92
Table 4.1: DMMAS analysis phase outputs...128
Table 4.2: DMMAS semiformal set..136
Table 4.3: Gaia semiformal set (Wooldridge et al., 2000)..136
Table 4.4: Detailed design phase components...158
Table 5.1: TAS facilities...163
Table 6.1: Comparison of Process-related criteria...220
Table 6.2: Evaluation of DMMAS Steps and Techniques...222
Table 6.3: Evaluation of DMMAS steps and Techniques..223
Table 6.4: Comparison regarding steps and usability of techniques.......................225
Table 6.5: Comparison regarding model related criteria..227
Table 6.6: Comparison regarding concepts...229
Table 6.7: Comparison regarding supportive related criteria.................................230
Table 6.8: Measurement scale for assessing multi-agent systems type....................233
List of Acronyms

The following acronyms and abbreviations of standards phrases are used throughout the thesis:

ARPA Advance Research Project Agency
AbSE Agent-based Software Engineering
AbS Agent-based System
AOSE Agent-Oriented Software Engineering
AOS Agent-Oriented Software
AI Artificial Intelligence
BDI Belief, Desire, and Intention agent architecture
DARPA Defence Advance Research Projects Agency
DFI Design Fabricator Interpreter
DMMAS Development Methodology for Multi-agent Systems
DAI Distributed Artificial Intelligence
DPS Distributed Problem Solving
ERD Entity Relationship Diagram
EVO Evolutionary Delivery
SXML Extensible Markup Language Schema
XML Extensible Markup Language
EP Extreme Programming
FIPA Foundation for intelligent physical agents (FIPA)
HERM High Entity Relationship Diagram
IS Information System
JVM Java Virtual Machine
JAD Joint Application Development
KIF Knowledge Interchange Formalism
KQML Knowledge Query Manipulation Language
KSE Knowledge Sharing Effort
MaS Multi-agent Systems
NII National Information Infrastructure
OMT Object Modelling Technique
OOSE Object-oriented Software Engineering
OWL Ontology Web Language
PTA Planned Team Activity
PASSI Process for Agent Societies Specification and Implementation
Pa Professional-agent
PDT Prometheus Development Tools
RAD Rapid Application Development
RDFS Resources Definition Framework Schema
RDF Resources Definition Framework
SP Shared Plans Theory
Sa Skill-agent
SDM Software Development Methodology
SAT Speech Act Theory
SQL Structured Query Language
SDLC System Development Life Cycle
TFP Team Formation Process
TAS Travel Agency System
DOD United States Department of Defence
W3C World Wide Web