A CROSS-CULTURAL STUDY OF STUDIO-BASED DESIGN EDUCATION WITH PARTICULAR REFERENCE TO SPECIFIC AUSTRALIAN AND MALAYSIAN CONTEXTS

HASZLIN SHAHARUDIN
Bachelor of Design (Industrial Design) Universiti Teknologi MARA (UiTM), MALAYSIA
MA Furniture Design and Technology, Buckinghamshire Chilterns University College (BCUC), UK

A THESIS SUBMITTED TO THE UNIVERSITY OF CANBERRA FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ENVIRONMENTAL DESIGN

FACULTY OF ARTS AND DESIGN
UNIVERSITY OF CANBERRA
AUSTRALIA
DECEMBER 2013
ABSTRACT

This thesis reports on a theoretical and empirical investigation of studio-based education with particular reference to students’ understanding of design problems and the design process in a cross-cultural design studio context. This understanding is found to be related to their design thinking as reflected in their responses to a detailed survey questionnaire, and also overtly by their step-by-step solutions to a common design problem held under similar conditions in the respective design studios of their university design schools. A basic research question has been to study how design students, from two different cultures—specifically the Universiti Teknologi MARA, (UiTM), Malaysia and the University of Canberra (UC), Australia—perceive and/or understand progressively what is involved in the different phases of the design process in project-based learning, to draw related comparisons and to identify differences of value to design educators.

The first part (Literature Review and Task Clarification) of the thesis comprises a critical review of the literature (and clarification of the research task) that has identified important knowledge gaps which required further research in this context. More specifically, this review has discovered that little has been published, in a cross-cultural context, about how students perceive what tasks are involved in the various phases of the design process, how they search for information to understand design problems, and how they regard important design variables and criteria including cultural factors, design discipline backgrounds, creativity, safety, form language, functionality and the influence of materials. These are clearly important issues of concern to design educators especially in a cross-cultural context. The findings of this literature review have been used to frame the aims and research questions of the thesis as well as formulating a research plan graphic for guiding the theoretical development and empirical investigation documented in subsequent chapters. These aims, research questions and research plan follow in Chapter 1, Introduction, which also outlines the background, scope and context of the this investigation.

In the next (Theoretical Development) part of the thesis, a novel composite model of the design process has been formulated which reconciles the respective phases of the design process with a simplified typology of visual design representations (VDR) and set of rational student performance criteria. Relatedly, a set of four of four assessment tools have been
derived that may be used to progressively evaluate student performance in project work and provide important feedback to teachers and students. This composite model of the process, and associated set of assessments tools, will have a significant positive impact on design education as they will form valuable aids for design teachers to better explain to their students the underlying rationale and interdependent relationships in the relevant phases of the design process, including details of task clarification, concept generation, evaluation and refinement of design concepts, detailed design and communication of results. This theoretical development part of the thesis has been utilised to guide the following experimental program including the design of the survey questionnaires employed.

The third (Experimental Results) part of the thesis comprises a detailed quantitative and qualitative empirical investigation of student perceptions in the design process, especially when working on a similar project in their respective Australian and Malaysian design studios. This investigation employs qualitative, one-on-one interviews to achieve a partial triangulation comparison of the quantitative and qualitative components of the mixed-methods research plan adopted in this research. Some informative examples are given to explain how the noted assessment tools may be applied in a studio context, and over a given time period consistent with students completing a common design brief. The important influences of cultural background, found to be different for the two student cohorts, and also how students from different disciplines perceive and progress design problems, have been investigated and documented in detail. Interestingly, students coming from different design disciplines are found to have differing views of the design process—these extensive qualitative and quantitative findings have been summarised and their significance on design education discussed in the last (Findings and Conclusions) chapter of the thesis. It is anticipated that, along with an associated data base of original empirical information, these findings will have an important impact on how design teachers approach project based learning in design, and will complement their current understanding of studio-based design education. Also included is a review of the original aims of the thesis along with recommendations for future. Finally, data bases of the noted quantitative and qualitative empirical information are given in the Appendices along by a comprehensive Bibliography.
ACKNOWLEDGEMENTS

The author thank and very grateful to God to bless all her efforts in this study. The author wishes to dedicate this thesis to her parents and family who provided encouragement and continuous support to their daughter. To “Mak and Abah I love you with all my heart and may ALLAH SWT grant you and bless both of you with happiness” and to “my dear nephew Ayip thank you so much for your help may ALLAH SWT bless you and grant you with happiness”.

The author would like to express deepest appreciation to her primary Supervisor, Emeritus Professor Elivio Bonollo, for his invaluable and inspiring guidance, encouragement and enduring patience, for his practical advice and suggestions, and his generous contribution of time during all stages of this research project. Professor Elivio was outstanding for providing me with the opportunity, encouragement and support to make it possible for me to undertake this study. To him “only God can reward for all the effort that he has done and I will miss our pleasurable discussions and your comical sense of humour”.

The author is grateful to the University of Canberra, the Universiti Teknologi MARA, Malaysia and Ministry of Higher Education Malaysia for the Postgraduate Award Scholarship to undertake and complete this doctoral research and thesis. In addition, the author would like to express her gratitude to her academic advisors from the University of Canberra, Associate Professor Dr.Carlos Montana Hoyos, Dr.Stephen Trathen, Dr.Chris Klimek, Dr.Thawon Niyompanitpatana, Dr.Don Carson, Mr.Julio Romero, and all the other academic and administrative staff members for sharing their teaching, feedback, advice and support. The author also grateful to Staff and academic advisor and students from Universiti Teknologi MARA, Malaysia, especially to Miss Wan Norfaaziah Wan Omar for her assistance. Too many to name here individually, and provided useful information and insight.

Finally, a very special thank you is owed to my dear husband, Mohammad Azroll Ahmad for his unstinting love, support, encouragement and enduring belief over many years that this task will be accomplished. To “dear may ALLAH SWT bless you and reward for your effort and may ALLAH SWT bless out marriage”.

CONTENTS

Abstract i
Certificate of Authorship iii
Acknowledgements iv
List of Figure ix
List of Table xiii

CHAPTER 1

1.1 Background 1
1.2 Context and Scope of Research 3
1.3 Aims and Research Questions 5
1.4 Research Plan and Thesis Layout 7

CHAPTER 2 LITERATURE REVIEW AND TASK CLARIFICATION

2.1 Preamble 9
2.2 The Design Studio 10
2.2.1 General features 10
2.2.2 Cross-cultural characteristics: The Malaysian and Australian Contexts 12
2.3 Project Based Learning 13
2.4 Drawing, Ideation and Creativity 18
2.4.1 Drawing and ideation in the design process 18
2.4.2 The typology of drawings and visual representations 19
2.4.3 Creativity, perception and visual representations 25
2.5 Tools and Criteria for Analysing Design Solutions 28
2.6 The Design Process in the Design Studio 32
2.7 Findings of the Literature Review and Task Clarification 34

CHAPTER 3 THEORETICAL DEVELOPMENT, RESEARCH METHODS AND EXPERIMENT PLAN

3.1 Preamble 37

Chapter 3 Part A
3.2 Theoretical Development 38
3.2.1 A proposed typology of drawings 38
3.3 Design Project Evaluation Criteria 39
CONTENTS

3.4 Development of Student Assessment Tools and Criteria 40
3.4.1 A composite model of the design process 40
3.5 Assessment System for Evaluating Project Work 42
3.5.1 Tool A: Evaluation of information content (criterion 1) 42
3.5.2 Tool B: Evaluation of creativity (criterion 2) 43
3.5.3 Tool C: Product design evaluation (criterion 3) 44
3.5.4 Tool D: Summative evaluation (Design process skillsCriterion 4) 45

Chapter 3 Part B
3.6 Research Methods and Experiment planning 46
3.6.1 Underlying research strategy 46
3.6.2 Qualitative and quantitative mixed-methods research designs 48
3.6.3 Questionnaire design 49
3.7 Selection of Participants 52
3.8 Analysis of Quantitative Empirical Data 53
3.8.1 SPSS Analysis 53
3.8.2 Examples of descriptive and inferential statistics 54
3.9 Analysis of Qualitative Data 57
3.9.1 NVivo Software analysis 57
3.10 Experiment Planning 59

CHAPTER 4: EXPERIMENT RESULTS
4.1 Preamble 61

Chapter 4 Part 1
4.2 Quantitative and Qualitative Data Analyses 61
4.2.1 Questionnaire (Part 2): Characteristics of the design process 64
4.2.2 Questionnaire (Part 3): Sketches and modelling 83
4.2.3 Questionnaire (Part 4): Cultural and Interdisciplinary Identity Aspects 85
4.2.4 Questionnaire (Part 5): The Studio Project 101
CONTENTS

Chapter 4 Part 2

4.3 Introduction 106
4.4 Qualitative Analysis Results 108
 4.4.1 Interior Design Group (UC) 108
 4.4.2 Industrial Design Group (UiTM) 113
4.5 Summary of qualitative analyses—comparison of all discipline groups 117

Chapter 4 Part 3

4.6 Qualitative examples—Assessment of students’ studio project work 122
 4.6.1 Example: Application of assessment Tool A 123
 4.6.2 Example: Application of assessment Tool B 125
 4.6.3 Example: Application of assessment Tool C 127
 4.6.4 Example: Application of assessment Tool D 128

CHAPTER 5: SUMMARY OF FINDINGS AND CONCLUSIONS

5.1 Preamble 130
5.2 Findings of the Literature Review and Task Clarification 130
5.3 Theoretical Development and Research Methods 131
5.4 Experiment Results 134
 5.4.1 Characteristics of the design process 134
 (results from Questionnaire Part 2)
 5.4.2 Sketches and modelling 136
 (results from Questionnaire Part 3)
 5.4.3 Cultural and Interdisciplinary Identity Aspects 137
 (Questionnaire Part 4)
 5.4.4 The Studio Project (results from Questionnaire Part 5) 139
 5.4.5 Findings from the Qualitative Interviews 140
5.5 Review of Findings in Relation to the Original Aims 142
5.6 Recommendations for Future Research 143

A detailed Bibliography and supporting Appendices are enclosed 143
APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Supporting documents</td>
<td>152</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Questionnaire forms</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Project brief</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Writers’ observations note</td>
<td>189</td>
</tr>
<tr>
<td>Appendix C</td>
<td>SPSS quantitative software output</td>
<td>192</td>
</tr>
<tr>
<td>Appendix D</td>
<td>NVivo qualitative software output</td>
<td>217</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Design student final outcomes</td>
<td>288</td>
</tr>
<tr>
<td>Appendix F</td>
<td>SPSS and NVivo software projects files(^2) (on DVD)</td>
<td></td>
</tr>
<tr>
<td>Appendix G</td>
<td>Interview transcripts (on DVD in PDF format)</td>
<td></td>
</tr>
</tbody>
</table>

\(^2\) Note: SPSS and NVivo programs are required to read the noted project files, however, the quantitative and qualitative analysis results of these are given in appendices C and D in PDF format. A trial version of the SPSS software can be downloaded from http://www.spss.en.softonic.com/ A trial version of the NVivo can be downloaded from http://www.qsrinternational.com
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Research Plan: Graphic outlining the theoretical and empirical activities carried out in this research project.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.1a</td>
<td>Research design (plan), outlining the theoretical and related activities carried out in Stage 1 and 2 of this research project.</td>
<td>37</td>
</tr>
<tr>
<td>Figure 1.1b</td>
<td>Extracted from the research plan in Figure 1.1: Graphic outlining the field work and empirical activities carried out in Stage 2 and 3 of this research plan.</td>
<td>62</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>A typical example of an experiential drawing by John Outram as cited in Lawson (2004).</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Visual reasoning model (Park and Kim et al. 2006).</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Overview of ideation effectiveness metrics (Verhaegen et al. 2013).</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Conceptual model of a Design Evaluation System, or classification (Gien, 2012).</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Generic model of the design process (Bonollo and Montana Hoyos 2012).</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>A composite, operational and interactive model of the design process that graphically reconciles a drawing typology, evaluation criteria and the respective phases of the design process.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Tool A: Evaluation of Information Content and Initial Creativity (level 1 and 2 sketches, CG phase).</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Tool B: Evaluation of Creativity (level 2 and 3 sketches, and mock-ups; ER & DD phases).</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Tool C: Product Design Evaluation (models & prototypes; DD & CR phases).</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Tool D: Summative Evaluation (Evaluation of Design Process Skills).</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Graphic of a concurrent, mixed-methods research design adopted in this research (after Creswell, 2009).</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Parent nodes (phases) and children nodes (constituent elements) applying to the detailed design and development phase: (NVivo output format).</td>
<td>57</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Percentage graph of UC and UiTM for visual and literature references.</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Percentage graph of UC and UiTM for techniques frequently used in design work.</td>
<td>66</td>
</tr>
</tbody>
</table>
Figure 4.3: Percentage graph of UC and UiTM for which people most influence design thinking.

Figure 4.4: Percentage graph of UC and UiTM groups for factors which most influence the selection ideas for final development.

Figure 4.5: Listing of important design factors in the Detailed Design and Development phase of the process, UC and UiTM (NVivo output format).

Figure 4.6: Percentage frequency graph of the important factors or issues to be considered in the detailed design and development phase (UC and UiTM).

Figure 4.7: UC Cluster analysis diagram: factors or issues to be considered in detailed design and development process phase (NVivo automatic output format).

Figure 4.8: UiTM Cluster analysis diagram: factors or issues to be considered in the detailed design development process phase (NVivo output format).

Figure 4.9: Listing the main constituent elements (component parts) of final communication and presentation of the design for the two Universities: Q2.5.1 (NVivo output format).

Figure 4.10: Percentage frequency graph of UC and UiTM student groups for the elements normally include in the final design.

Figure 4.11: UC Cluster analysis diagram for elements normally included in the final presentation of the design (NVivo output format).

Figure 4.12: UiTM Cluster analysis diagram for elements normally included in the final presentation of the design (NVivo output format).

Figure 4.13: Percentage graph (UC and UiTM) regarding the importance of the quantity sketches used in the design process.

Figure 4.14: Percentage graph for UC and UiTM student responses regarding the sequence of activities involved in designing a chair or equivalent object.

Figure 4.15: Listing of the children answer nodes: adaptation of influences from different art and design disciplines in contributing more design ideas? (NVivo output format).

Figure 4.16: Percentage frequency graph of UC and UiTM student groups: adaptation of influences from different art and design disciplines I contributing more design ideas?

Figure 4.17: Listing the response nodes related to the possible influences from different art and design backgrounds. Actual student design project (NVivo output format).
Figure 4.18: Percentage frequency graph of the influences from different art and design influences on student design projects for UC and UiTM groups.

Figure 4.19: Listing of the basic themes (as children nodes) and disciplines (as parent nodes), showing the interviewing format for the two University cohorts along design discipline lines. (NVivo output format).

Figure 4.20: Interview responses arranged for the Interior Design discipline case (i.e., NVivo parent node), basic themes (children nodes) and sub-themes for the UC student interview cohort (NVivo output format).

Figure 4.21: Cluster analysis for ‘Characteristics of your design concepts’ (theme 1) for UC Interior Design students (NVivo output format).

Figure 4.22: Cluster analysis for ‘Different ways to design furniture by different disciplines’ (theme 2) for UC Interior Design student (NVivo output format).

Figure 4.23: Cluster analysis: ‘Influences of background, knowledge, experience, hobbies or other interests during the design process’ (theme 3) for UC Interior Design student (NVivo output format).

Figure 4.24 Interview responses arranged for the Industrial Design discipline case (i.e., NVivo parent node), basic themes (children nodes) and sub-themes for the UiTM student interview cohort (NVivo output format).

Figure 4.25: Cluster analysis for ‘Characteristics of your design concepts’ (theme 1) for UiTM Industrial Design students (NVivo output format).

Figure 4.26: Cluster analysis for ‘Different ways to design furniture by different disciplines’ (theme 2) for UiTM Industrial Design student (NVivo output format).

Figure 4.27 Cluster analyses for ‘Influences of background, knowledge, experience, hobbies or other interests during the design process’ (theme 3) for UiTM Industrial Design students (NVivo output format).

Figure 4.28: Summary percentage frequency bar chart for ‘Characteristics of your design concepts’ (theme 1) for Interior Design, Industrial Design, Graphic Design, Ceramic Design and Design Education student cohorts.

Figure 4.29: Percentage bar chart for ‘Different ways to design furniture by different disciplines’ (theme 2) for Interior Design, Industrial Design, Graphic Design, Ceramic Design and Design Education student cohorts.

Figure 4.30: Percentage frequency bar chart for ‘Influence of background, knowledge, experiences, hobbies or other interests during the design process’ (theme 3) for Interior Design, Industrial Design, Graphic Design, Ceramic Design and Design Education student cohorts.
Figure 4.31: Percentage graph ‘People who select the final design’ (theme 4) for Interior Design, Industrial Design, Graphic Design, Ceramic Design and Design Education.

Figure 4.32: Concept generation Phase (CG)—typical Level 1 sketches by an Industrial design student from UiTM (Code No. 031) produced when attempting the noted furniture design brief (refer Appendix E).

Figure 4.33: Evaluation and Refinement Phase (ER) and Detailed Design (DD) phases—typical Level 2 and 3 sketches/CAD drawing/mock-ups compiled by an Industrial Design student from UiTM (Code No. 031) produced when attempting the noted furniture design brief (refer Appendix E).

Figure 4.34: Detailed Design (DD) and Communication of Results (CR) phases—typical full scale prototype, and CAD drawing, of a furniture bench by an Industrial Design student from UiTM (Code No.031) produced when attempting the noted furniture design brief (refer Appendix E).
LIST OF TABLES

Table 2.1: Principal characteristics of studio teaching extracted from STP report Volume 3 (Frankham, Wilson, et al. 2009).

Table 2.2: Assessment ‘dimensions’ with core indicators and definitions—as extracted in abbreviated form from STP Report Volume 1 (Zehner et al., 2009). See also De la Harpe et al. (2009).

Table 2.3: Worksheet for marking student work prepared by Orr (extracted from ADM-HEA Learning & Teaching Projects 2010-11).

Table 2.4: Complexity scale as extracted verbatim from Rogers, Green, et al. (2000)

Table 2.5: Drawing categories proposed by Lawson (2004, p34).

Table 2.6: Taxonomy (classification) of visual design representations (VDR), as initially proposed by Pei, Campbell et al. (2011).

Table 2.7: Sub Groups of sketches proposed by Pei, Campbell and Evan (2011).

Table 2.8: Comparison of sub groups of drawings for industrial and engineering design, respectively, as proposed by Pei, Campbell and Evans (2011).

Table 2.9: Design process model commonly used in RIBA practice (Lawson 1994).

Table 3.1: Simplified VDR typology of sketches, drawings, models and prototypes commonly used in the phases of the design process (Industrial Design and similar contexts). For specific typology examples, refer to the compendium of drawings documented in Appendix E.

Table 3.2: Summary of the proposed assessment system showing the application of the four evaluation Tools/criteria in relation to the phases of the design process.

Table 3.3: Summary of design courses, subjects/units and degree level studies for UC and UiTM.

Table 3.4: Summary table of gender and participant samples sizes for UC and UiTM (SPSS output format).

Table 3.5: Example of a closed-ended question (refer to Appendix B for the complete questionnaire).

Table 3.6: Example of a semi structured, open-ended question as extracted from the complete questionnaire (refer to Appendix B).

Table 3.7: Example of a Likert scale question as extracted from the complete questionnaire (refer to Appendix B).
Table 3.8: Number of participant by different discipline backgrounds from both universities.

Table 3.9: Number of participants responding to the questionnaire grouped by different discipline backgrounds (SPSS output format).

Table 4.1a: Summary and order of analysing the questions in Part 2 of the survey questionnaire.

Table 4.1b: Summary and order of analysing the questions in Part 3 of the survey questionnaire.

Table 4.1c: Summary and order of analysing the questions in Part 4 of the survey questionnaire.

Table 4.1d: Summary and order of analysing the questions in Part 5 of the survey questionnaire.

Table 4.2: Percentage summary table of UC and UiTM student responses for sources of visual and literature references.

Table 4.3: Percentage summary table for UC and UiTM student groups for techniques frequently used in design work.

Table 4.4: Percentage summary table of UC and UiTM for people who most influence design thinking.

Table 4.5: Percentage summary table of UC and UiTM for factors which most influence the selection of ideas for final development.

Table 4.6: Graph of the four highest and lowest percentage rankings for UC and UiTM groups for ‘factors which most influence your selection of the ideas for final development’

Table 4.7: Frequency and percentage frequency (UC and UiTM) for the important factors or issues to be considered in the detailed design development phase of the design process.

Table 4.8: Correlation coefficient analysis for UC student cohort (NVivo output format).

Table 4.9: Correlation coefficient analysis for UiTM student cohort (NVivo output format).

Table 4.10: Frequency and percentage frequencies for the final communication and presentation of the design for UC and UiTM (CR phase).

Table 4.11: Correlation coefficient analysis for UC student cohort (NVivo output format).
Table 4.12: Correlation coefficient analysis for UiTM student cohort (NVivo output format).
Table 4.13: Quality of final design criteria, and related descriptive statistics (SPSS output format).
Table 4.14: Mann-Whitney U test results for Likert Scale question 2.5.2: comparison of the relative importance of quality criteria for the final design (CR phase of the design process)—UC and UiTM groups (SPSS output format).
Table 4.15: Kruskal-Wallis test results for Likert Scale question 2.5.2: comparison of the relative importance of quality criteria for the final design presentation (CR phase of the design process) for Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).
Table 4.16: UC and UiTM groups; percentage frequency scores: Quality of the final design (construction of the design criterion) —Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).
Table 4.17: Concise summary of finding/comments for Part 2 of the questionnaire (as related to the phases of the design process).
Table 4.18: Summary percentage table for UC and UiTM student groups regarding for the importance of the quantity of sketches use in design process (SPSS output format).
Table 4.19: Percentage summary table of UC and UiTM for activities involved in chair or equivalent object design (SPSS output format).
Table 4.20: Concise summary of finding/comments for Part 3 of the questionnaire.
Table 4.21: The relative importance of factors (or criteria) when creating the identity or visual image of a chair design (SPSS output format).
Table 4.22: Mann-Whitney U test results for Likert Scale question 4.1: comparison of factors when creating the identity or visual image of a chair design—UC and UiTM groups (SPSS output format).
Table 4.23: Kruskal-Wallis test results for Likert Scale question 4.1: comparison the relative of factors when creating identity of a chair design— for Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).
Table 4.24: Project experience: The influences of Cultural background?—UC and UiTM groups (SPSS output format).
Table 4.25: Mann-Whitney U test results for Likert Scale question 4.2: Recent design project experience: the influences of Cultural background?——UC and UiTM groups (SPSS output format).
Table 4.26: Kruskal-Wallis test results for Likert Scale question 4.2: Recent design project experience: the influences of Cultural background?—for Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).

Table 4.27: Percentage frequency table. Recent design project experience: the influences of Cultural background?—Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).

Table 4.28: A Craft chair’s identity is recognisable without specific cultural influences—UC and UiTM groups (SPSS output format).

Table 4.29: Mann-Whitney U test results for Likert Scale question 4.3: A Craft chair’s identity is recognisable without specific cultural influences—UC and UiTM groups (SPSS output format).

Table 4.30: Kruskal-Wallis test results for Likert Scale question 4.3: A Craft chair’s identity is recognisable without specific cultural influences—Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).

Table 4.31: An Industrial Design chair’s identity is recognisable without specific cultural influences.—UC and UiTM groups (SPSS output format).

Table 4.32: Mann-Whitney U test results for Likert Scale question 4.4: An Industrial Design chair’s identity is recognisable without specific cultural influences.—UC and UiTM groups (SPSS output format).

Table 4.33: Kruskal-Wallis test results for Likert Scale question 4.4: An Industrial Design chair’s identity is recognisable without specific cultural influences—Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education disciplines (SPSS output format).

Table 4.34: Factors that most strongly represent the specific cultural influences on the identity of a chair UC and UiTM groups (SPSS output format).

Table 4.35: Mann-Whitney U test results for Likert Scale question 4.5: Factors most strongly representing the specific cultural influences on the identity of a chair—UC and UiTM groups (SPSS output format).

Table 4.36: Kruskal-Wallis test results for Likert Scale question 4.5: Factors most strongly representing the specific cultural influences on the identity of a chair—Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).

Table 4.37: What are the most important of the elements that need to be considered in the pursuit of identity?—UC and UiTM groups (SPSS output format).
Table 4.38: Mann-Whitney U test results for Likert Scale question 4.7: What are the most important of the elements that need to be considered?—UC and UiTM groups (SPSS output format).

Table 4.39: Kruskal-Wallis test results for Likert Scale question 4.7: What are the most important elements that need to be considered in the pursuit of identity? For Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education disciplines (SPSS output format).

Table 4.40: Percentage frequency Table: What are the most important elements that need to be considered in the pursuit of identity (Cultural influences) — Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).

Table 4.41: Likert scale questionnaire (extracted from questionnaire survey).

Table 4.42: Aspects that contribute to consumer preferences in purchasing decisions—UC and UiTM groups (SPSS output format).

Table 4.43: Mann-Whitney U test results for Likert Scale question 4.8: Aspects contributing to consumer preferences in their purchasing decisions—UC and UiTM groups (SPSS output format).

Table 4.44: Kruskal-Wallis test results for Likert Scale question 4.8: Aspects that contribute to consumer preferences in their purchasing decisions—Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).

Table 4.45: Percentage frequency table. Safety aspect and its contribution to consumer preferences in their purchasing decisions—disciplines of Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).

Table 4.46: Percentage Table. Material aspect and its contribution to consumer preferences in their purchasing decisions—Industrial Design, Graphic Design, Ceramic Design and Interior Design (SPSS output format).

Table 4.47: Concise summary of finding/comments for Part 4 of the questionnaire.

Table 4.48: Response to question 5.1 in relation to identity and attraction of the selected place and location; design development reflecting identity and the needs of the consumers—UC and UiTM groups (SPSS output format).

Table 4.49: Mann-Whitney U test results for Likert Scale question 5. Parts a, b and c—UC and UiTM groups (SPSS output format).

Table 4.50: Kruskal-Wallis test results for Likert Scale question 5.1a, b and c: for the Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education disciplines (SPSS output format).
Table 4.51: Percentage Table. Design development reflected the identity of the location/place? Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education disciplines (SPSS output format).

Table 4.52: Likert scale response scores: Question 5.3: Knowledge of cultural influences needs to be better improved to generate appropriate design ideas or concepts?—UC and UiTM groups (SPSS output format).

Table 4.53: Mann-Whitney U test results for Likert Scale question 5.3: Knowledge of cultural influences needs to be better improved to generate ideas and concepts?—UC and UiTM groups (SPSS output format).

Table 4.54: Kruskal-Wallis test results for Likert Scale question 5.3: Knowledge of cultural influences needs to be better improved to generate ideas and concepts for Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).

Table 4.55: Percentage frequency table. Question 5.3: In your opinion, do you agree or disagree that knowledge of cultural influences needs to be better improved……?—Industrial Design, Graphic Design, Ceramic Design, Interior Design and Design Education (SPSS output format).

Table 4.56: Concise summary of finding/comments for Part 5 of the questionnaire.

Table 4.57: Description/explanation of sub-themes for theme 1: Characteristics of design concepts.

Table 4.58: Pearson correlation coefficients (based on word similarity): ‘Characteristics of your design concepts’ (Theme 1) for UC Interior Design students (NVivo output format).

Table 4.59: Pearson correlation coefficients (based on word similarity): ‘Different ways to design furniture by different disciplines’ (theme 2) for UC Interior Design student (NVivo output format).

Table 4.60: Pearson correlation coefficients (based on word similarity): ‘Influence of background, knowledge, experience, hobbies or other interests during the design process (theme 3) for UC Interior Design student (NVivo output format).

Table 4.61: Pearson correlation coefficients (based on word similarity): ‘Characteristics of your design concepts’ (Theme 1) for UiTM Industrial Design student (NVivo output format).

Table 4.62: Pearson correlation coefficients (based on word similarity): ‘Different ways to design furniture by different disciplines’ (theme 2) UiTM Industrial Design students (NVivo output format).

Table 4.63: Pearson correlation coefficients (based on word similarity) ‘Influence of background, knowledge, experiences, hobbies or other interests during the design process’ (theme 3) for UiTM Industrial Design students (NVivo output format).
Table 4.64: Summary percentage frequency table for ‘Characteristics of your design concepts’ (theme 1), for Interior Design, Industrial Design, Graphic Design, Ceramic Design and Design Education student cohorts.

Table 4.65: Summary percentage frequency table for ‘Different ways to design furniture by different disciplines’ (theme 2), for Interior Design, Industrial Design, Graphic Design, Ceramic Design and Design Education student cohorts.

Table 4.66: Summary percentage frequency table for ‘Influence of background, knowledge, experiences, hobbies or other interests during the design process’ (theme 3) for Interior Design, Industrial Design, Graphic Design, Ceramic Design and Design Education.

Table 4.67: Percentage summary table ‘People who select the final design’ (theme 4) for Interior Design, Industrial Design, Graphic Design, Ceramic Design and Design Education.