HIGH SENSITIVITY TROPONIN - ITS USE IN DIAGNOSIS OF CARDIAC DYSFUNCTION

A thesis submitted in the fulfilment of the requirements for the degree of Doctor of Philosophy
University of Canberra

Gary Lloyd Koerbin
ABSTRACT

Troponins are regulatory proteins and part of the contractile apparatus that is integral to muscle contraction in skeletal and cardiac muscle but not smooth muscle and are important clinically because cardiac troponins (cTn) are sensitive indicators of myocyte injury and have become integral to the definition of myocardial infarction. There are several issues surrounding the significance of troponin and how it should be used, both for the assessment of cardiac disease and in settings of non-cardiac illness. This thesis examines a number of these areas of uncertainty.

This thesis focuses initially on the analytical validation of troponin assays and I offer guidelines for a standardised approach to undertaking the verification of these analytical characteristics. I report on these characteristics for 2 highly sensitive assays and their application to a cardio-healthy population.

In the second part of this thesis I focus on the physiology of troponin in the normal population. I describe studies undertaken with a cohort of healthy children and demonstrate the significance of population coning when determining the 99th percentile of the upper reference limit using 2 highly sensitive troponin assays.

The final part of this thesis investigates the significance of troponin in the acute coronary syndrome (ACS) and non ACS setting. I offer a hypothesis suggesting that bleb formation is a mechanism for troponin release. I describe how improvements in sensitivity of troponin T assays allow better prognostic information regarding all cause mortality in end stage renal disease patients, demonstrate troponin release after strenuous exercise in elite cyclists and I describe a cross-sectional study looking at troponin concentrations in subjects with non cardiac illness and the general community. Using data mining techniques I demonstrate how
the use of a new high sensitivity troponin I assay can offer greater assistance to the clinician in stratifying patients at risk of a major adverse cardiac event (MACE). I provide evidence that suggests the use of a multi-marker approach to identifying patients at risk is potentially viable.
ACKNOWLEDGEMENTS

Undertaking a PhD requires a lot from many people to achieve the ultimate outcome. It requires a lot of time, assistance, guidance, support and encouragement from mentors, colleagues and friend. It is almost impossible to thank everyone who helps in these ways but there are those who must be thanked for without the ongoing support and guidance the task of undertaking and completing this thesis would have been less enjoyable and far more onerous.

I would like to thank my supervisors and advisors Peter Hickman, Julia Potter, Brett Lidbury, Alice Richardson and Luby Simson. Their support, encouragement, advice and mentoring ultimately has allowed me to be able to submit this work.

To Peter Hickman and Julia Potter a special thank you, over and above their advice and supervision, for their friendship, encouragement and support over the past 15 years.

To my friends and clinical colleagues, Walter Abhyaratna, Girish Talaulikar, Daryl McGill and Louise Cullen thank you for access to the clinical samples and clinical outcome data used in these research studies.

Undertaking the many analyses performed in these studies would only have been possible with the technical assistance, access to analytical instrumentation, support and the gentle “encouragement” of staff in the clinical chemistry department of ACT Pathology - Jaya Canard, Suzi Apostoloska, Di Talsma, Carmen Oakman and Corrina Newman. Also to Peter Talsma, thanks for the continued supply of journal articles to read. Thank you all.

My colleagues, Nicole Chia and Kerrie Andriolo, both of whom are also undertaking post graduate studies, provided encouragement at times when it was most needed. It was and is very much appreciated.
DECLARATION

In this thesis I detail the findings from research carried out between July 2009 and August 2013. The research studies described in Chapters 3-5 were carried out in collaboration with my co-authors, the names of whom are listed at the start of each chapter. For each of these studies I took a lead role in the experimental design, subject recruitment, data collection and analysis, with all authors contributing to final submitted version of the manuscripts. I obtained assistance with these concepts from my supervisory panel members A/Professor Peter E Hickman, Professor Julia M Potter, A/Professor Brett Lidbury and Dr Alice Richardson.

I obtained assistance with and analysis with the mathematical approach to data mining from A/Professor Brett Lidbury and Dr Alice Richardson.

I obtained assistance with the administrative and scientific components of this thesis from A/Professor Luby Simson
DEDICATION

To my family, it was my mother’s wish to see her two sons receive “the floppy hat”. Unfortunately she passed away before both my brother, Paul, and I completed our studies. My dad will complete that wish for her.

To Anne, Liesel and Scott, thank you for putting up with the “Grumpy Gus” when he reared his head over the past few years and for the unconditional support.

shukran kabeer.
PUBLICATIONS AND PRESENTATIONS RELEVANT TO THIS THESIS

PEER REVIEWED JOURNAL ARTICLES

Tate JR, Panteghini M, **Koerbin G**, Hickman PE, Schneider HG, Jaffe A. Verification of the analytical characteristics of troponin assays in the laboratory – a how to guide. Clin Biochem Reviews Troponin Monograph 2012 69-85

Potter JM, Simpson A, Koerbin G, Kerrigan J, Southcott E, Hickman PE. Cardiac troponin and non-cardiac illness: high sensitivity cardiac troponins in a cross-sectional study in a general hospital and a community population. (submitted to Clin Chim Acta)
PEER REVIEWED CONFERENCE PROCEEDINGS

Hickman PE, Koerbin G, Potter JM, Talaulikar G, McGill D. 5 Year Outcomes in renal Dialysis Patients: New hsTnI assays are as informative as hsTnT. Clin Biochem Rev 2011;34:S26

SCIENTIFIC CONFERENCE AND MEETING PRESENTATIONS

2010
SW AIMS meeting, Canberra
“Troponin Past, Present and Future?”

2010
AACB NSW/ACT Branch Meeting
“Evaluation of the Roche hs-TnT Assay”

2010
AACB SES, Sydney
“hs-TnT which reference intervals?”

2010
AACB/AIMS Combined Annual Scientific Meeting, Perth
“Highly Sensitive TnT – An opening to a whole new world”

2011
Roche Cardiac Symposium, Heidelberg, Germany
“hs-Tn and Healthy Populations”

2011
Abbott New Zealand Architect User Symposium, Rotorua, NZ
“Highly Sensitive Troponin”

2012
Abbott Scientific Symposium. Sydney
“High Sensitivity troponin – its use in diagnosis of cardiac dysfunction

2012
Abbott Scientific Symposium. Melbourne
“High Sensitivity troponin – its use in diagnosis of cardiac dysfunction
AWARDS

The Roche Diagnostics Australia Award
“Best Poster Presentation prize for the 2012 AACB Scientific Conference, Melbourne 2012”
TABLE OF CONTENTS

ABSTRACT ii
CERTIFICATE OF AUTHORSHIP OF THESIS iv
ACKNOWLEDGEMENTS v
DECLARATION vi
DEDICATION vii
PUBLICATIONS AND PRESENTATIONS RELEVANT TO THIS THESIS viii
 Peer reviewed journal articles xi
 Peer reviewed conference proceedings xiii
 Scientific conference and meeting presentations xiv
 Awards xxiv
LIST OF TABLES xxvii
LIST OF FIGURES
LIST OF ABBREVIATIONS

CHAPTER 1
Introduction 1
Troponin release only occurs in the presence of necrosis 1
How should we use troponin in the investigation of the Acute Coronary syndrome (ACS)? 2
What is the significance of troponin in the pathological non-ACS setting? 2
Thesis outline 3
Are the high sensitivity troponin assays fit for purpose? 3
What is the distribution of troponin in healthy people and how do we determine appropriate decision points? 4
What information DOES the troponin concentration provide to us in the ACS and non ACS setting? 4

CHAPTER 2
Literature review 6
Introduction 6
Normal physiology of troponin and its application to the ACS 6
Cardiac troponin complex 8
Normal myocyte cell turnover. 9
Definition of the Acute Coronary Syndrome (ACS) 10
Development of ACS 10
Acute Myocardial Infarction (AMI) 13
Pathophysiology of Myocardial infarction 14
Clinical features of myocardial ischemia and infarction 15
Spontaneous myocardial infarction (MI type 1) 16
Myocardial infarction secondary to an ischemic imbalance (MI type 2) 16
Biomarker use in the detection of myocardial injury with necrosis 18
The cardiospecificity of troponin: evidence of skeletal muscle release of cTnT 19
Troponin and non Acute Coronary Syndrome (ACS) 20
Troponin and renal disease 21
Troponin and sepsis 23
Irreversible damage 23
Reversible damage 24
Formation and release of membranous blebs. 26
Troponin and exercise 27
Proteolytic troponin degradation products and increased cellular wall permeability. 29
Troponin assays 30
Troponin assay issues - Standardisation 34
Troponin assay issues - interference 35
Troponin assay issues - Reference values 37
Troponin Issues – changes in testing protocols 38
Use of the troponin 99th percentile URL for the diagnosis of ACS and in the assessment of cardiac risk? 39
Other biochemical cardiac markers 40
B type natriuretic peptide (BNP) and C-reactive protein (CRP) 40
Heart Type fatty acid binding protein and copeptin 42
Growth-differentiation factor-15 43
MicroRNAs 43
CHAPTER 3.1
The determination of the performance characteristics of highly sensitive troponin assays and validation of their fitness for purpose in the clinical laboratory 55
CHAPTER 3.2
Verification of the analytical characteristics of troponin assays in the laboratory – a how to guide 58
Abstract 59
Introduction 60
Verification and Validation Studies 61
Troponin Assays 62
Assay principles 62
Antibody specificity 63
Troponin plasma forms and definition of the measurand 65
Troponin I 65
Troponin T 65
Standardisation 65
Troponin I 65
Troponin T 66
Limit of blank, limit of detection, and limit of quantitation 66
Imprecision and limit of quantitation 67
Deriving basic information on imprecision 67
Imprecision profiling 68
Controversial issues about imprecision 69
Interferences 70
Haemolysis Testing 70
Heterophile antibodies and HAMA 73
CHAPTER 4.1
Physiology of cardiac troponin in the normal population

CHAPTER 4.2
Longitudinal studies of cardiac troponin I in a large cohort of healthy children.

CHAPTER 4.3
The distribution of cardiac troponin I in a population of healthy children: lessons for adults.

CHAPTER 4.4
Transient troponin elevations in the blood of healthy young children

CHAPTER 4.5
The Effect of Population Selection on the 99th Percentiles for a High Sensitivity Cardiac Troponin I and a High Sensitivity Cardiac Troponin T Assay
CHAPTER 5.1
Pathology and troponin: The significance of troponin in the ACS and non-ACS setting.

CHAPTER 5.2
Cardiac troponin may be released by ischemia alone, without necrosis

Abstract
Introduction
The cellular location of cardiac troponin
Cardiac troponin release during the acute coronary syndrome
Clinical situations associated with a short half-life of troponin in the circulation
Liver studies which might explain a mechanism for troponin release by ischemia alone
Clinical
Experimental studies
Is there any evidence for reversible enzyme or troponin release and/or bleb development in cardiac myocytes?
Could bleb development be artifactual and related to preparation of single cells?
How cardiac troponin is released during ischemia without necrosis
What is the significance of troponin being released by ischemia alone?
Linkage of bleb formation and release of cardiac troponin with integrin stimulation

CHAPTER 5.3
Over time, high-sensitivity cTnT replaces NT-proBNP as the most powerful predictor of death in patients with dialysis-dependent chronic renal failure

Abstract
Introduction
Materials and Methods
Patients
Sample integrity
Assays
Statistics
Results
Prognostic performance of the new (5th generation high sensitivity) versus old (4th generation) cTnT assays
Discussion
Conclusions
CHAPTER 5.4
Cardiac electrical conduction, autonomic activity and biomarker release during recovery from prolonged strenuous exercise in trained male cyclists. 241

Abstract 242
Introduction 243
Materials and Methods 245
Subjects 245
Study design 245
Incremental exercise test 246
Prolonged constant-load exercise test 247
Electrocardiograph recordings 247
Data analysis 248
Blood sample collection and biochemical analysis 250
Statistics 252
Results 252
Subject characteristics 252
Prolonged constant-load cycle test 252
Heart rate variability 253
Cardiac cycle dynamics 254
Biochemical analysis 257
Discussion 263
Conclusions 267

CHAPTER 5.5
Cardiac troponin and non-cardiac illness: high sensitivity cardiac troponins in a cross-sectional study in a general hospital and a community population 273

Abstract 274
Introduction 275
Materials and Methods 275
Patient samples 276
Laboratory analyses 276
Data handling 277
Results 277
Discussion 282

CHAPTER 5.6
A data mining approach for the prognostic efficacy of troponin I and other biomarkers for predicting a coronary event within 30 days in emergency department patients. 285

Abstract 286
Introduction 287
Decision tree 288
Random Forest 288
Support vector machine (SVM) 289
Principal components analysis (PCA) 289
Classical Multidimensional Scaling (MDS) 289
Materials and Methods 290
Participants 290
Procedures 291
Data mining 292
Results 293
Discussion 305
Conclusions 306

CHAPTER 6
Summary and future directions 309
Practical recommendations provided by the studies in this thesis 311
The future 311
LIST OF TABLES

CHAPTER 2
Table 2.1 Classifications of Myocardial Infarction.
Table 2.2 Non-coronary conditions that may cause elevated troponin
Table 2.3 99th percentile and imprecision levels for troponin assays
Table 2.4 Scorecard designation of troponin assays
Table 2.5 Association between biomarker and serious cardiac outcome after 72 hours.

CHAPTER 3.2
Table 3.2.1 Analytical characteristics of commercial cardiac troponin I and T assays declared by the manufacturer
Table 3.2.2 Requirements for the applicability of EQA results to evaluation of the performance of individual laboratories in the measurement of cTn
Table 3.2.3 Analytical performance goals for cTnI measurements using routine methods based on data of biological variability

CHAPTER 3.3
Table 3.3.1 Measured mean cardiac troponin (cTn) concentrations, recovery and imprecision for nine daily measurements of thirteen linearly related plasma samples.
Table 3.3.2 Median cardiac troponin T concentrations and 99th percentile values in men and women younger and older than 60 years.

CHAPTER 4.2
Table 4.2.1 Number of LOOK children from each year of the study who had cTnI concentrations above the indicated cut-point.
Table 4.2.2 Variable 99th percentiles based upon whether highest or lowest cTnI concentration used, where multiple blood samples collected from the one child.
Table 4.2.3 Median, 2.5th and 97.5th percentiles for both cTnI concentration in the different groups, and the biological variation of cTnI in these groups.
Table 4.2.4 Index of Individuality and RCV data for hs-cTnI in healthy children.

CHAPTER 4.4
Table 4.4.1 Proportion of TnT-positive results relating to the number of times a child was bled.

CHAPTER 4.5
Table 4.5.1 Characteristics of the healthy controls, after coning based on biomarker, clinical and echocardiographic screening.
Table 4.5.2 The effect of coning with both laboratory and clinical indices on the 99th percentile for the Abbott ARCHITECT hs-cTnI assay.
Table 4.5.3 The effect of coning with both laboratory and clinical indices on the 99th percentile for the Roche hs-cTnT assay.
Table 4.5.4 Shapiro – Wilk probability of a Gaussian distribution. \(P < 0.05 \) indicates a normal distribution.

Table 4.5.5 Major population studies looking at 99th percentiles for hs-cTnI and hs-cTnT

CHAPTER 5.3
Table 5.3.1 Descriptive statistics for high risk variables.
Table 5.3.2 Area under curve analysis for all cause mortality prediction

CHAPTER 5.4
Table 5.4.1 Heart rate variability parameters before and during recovery from prolonged strenuous exercise.
Table 5.4.2 Biochemical analyte concentrations before and during recovery from prolonged strenuous exercise.

CHAPTER 5.5
Table 5.5.1 TnI concentration measured with a high-sensitivity assay, in a hospital and community practice population.
Table 5.5.2 TnT concentration measured with a high-sensitivity assay, in a hospital and community practice population.
Table 5.5.3 Summary of Emergency Department requests
Table 5.5.4 Clinical assessment and mortality in all patients with cTnI above the 99th percentile

CHAPTER 5.6
Table 5.6.1 Combined and gender specific sensitivity, specificity, PPV and NPV values obtained when comparing patients with no cardiac condition and those patients who had a confirmed MACE
Table 5.6.2 Descriptive statistical analysis showing event rates at specific hsTnI concentration decision points.
Table 5.6.3 Combined and gender specific sensitivity, specificity, PPV and NPV values obtained for those patients who had a confirmed MACE using manufacturer defined hsTnI concentration decision points
Table 5.6.4 Combined and gender specific sensitivity, specificity, PPV and NPV values obtained for those patients with a stable cardiac condition using manufacturer defined decision points:
Table 5.6.5 Combined gender sensitivity, specificity, PPV and NPV values obtained for those patients with MACE and stable cardiac condition using decision tree defined cutpoints
LIST OF FIGURES

CHAPTER 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic of troponin complex</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>The 7 stages of development of an atherosclerotic plaque</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Atheromatous plaque development – preclinical and clinical phases</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>ACS as a continuum of disease</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Differentiation between MI types 1 and 2</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Mechanism of troponin release</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic model illustrating the release mechanisms of cTnI and cTnT from cardiomyocytes following reversible or irreversible damage</td>
<td>30</td>
</tr>
</tbody>
</table>

CHAPTER 3.2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Imprecision profiles</td>
<td>69</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Effect of haemolysis on Tn assays</td>
<td>71</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Bland Altman analysis of hsTnT and 4th generation TnT assays</td>
<td>76</td>
</tr>
<tr>
<td>3.2.4</td>
<td>hs-cTnT population distribution</td>
<td>79</td>
</tr>
</tbody>
</table>

CHAPTER 3.3

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Imprecision profile of hsTnT</td>
<td>96</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Passing-Bablok regression analysis plot of cardiac troponin T for 96 plasma samples</td>
<td>97</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Bland Altman analysis of cardiac troponin T for 96 plasma samples</td>
<td>98</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Expanded Bland Altman analysis of cardiac troponin T for 96 plasma samples</td>
<td>98</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Regression analysis, serum vs lithium heparin plasma</td>
<td>99</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Distribution of serum troponin concentrations for the Roche hs-TnT method</td>
<td>100</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Differences in cardiac troponin T concentrations in men and women younger and older than 60 years</td>
<td>101</td>
</tr>
</tbody>
</table>

CHAPTER 3.4

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>Imprecision profile showing assay total CV versus log concentration for the Abbott hs-TnI assay</td>
<td>116</td>
</tr>
<tr>
<td>3.4.2A</td>
<td>Deming regression comparison between on market TnI assay and research prototype hsTnI assay over the range 10-950 ng/L</td>
<td>118</td>
</tr>
<tr>
<td>3.4.2B</td>
<td>Difference plot showing comparison between on market TnI assay and research prototype hsTnI assay over the range 10-950 ng/L</td>
<td>119</td>
</tr>
<tr>
<td>3.4.3A</td>
<td>Difference plot showing comparison between serum and lithium heparin plasma over the range 1-5400 ng/L</td>
<td>120</td>
</tr>
<tr>
<td>3.4.3B</td>
<td>Difference plot showing comparison between serum and EDTA plasma over the range 1-5400 ng/L</td>
<td>121</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Effect of haemolysis</td>
<td>122</td>
</tr>
<tr>
<td>3.4.5A</td>
<td>Distribution of serum hs-TnI concentrations in cardio-healthy males</td>
<td>123</td>
</tr>
<tr>
<td>3.4.5B</td>
<td>Distribution of serum hs-TnI concentrations in cardio-healthy females</td>
<td>124</td>
</tr>
</tbody>
</table>
CHAPTER 4.2
Figure 4.2.1 *hs-cTnI frequency distribution for 8 year old males.*
Figure 4.2.2 *hs-cTnI frequency distribution for 10 year old males.*
Figure 4.2.3 *hs-cTnI frequency distribution for 12 year old males.*
Figure 4.2.4 *hs-cTnI frequency distribution for 8 year old females.*
Figure 4.2.5 *hs-cTnI frequency distribution for 10 year old females.*
Figure 4.2.6 *hs-cTnI frequency distribution for 12 year old females.*
Figure 4.2.7 *Within- and between-child cTnI concentrations for 453 children who had more than 1 measurement made.*
Figure 4.2.8 *Within- and between-child cTnI concentrations for 453 children who had more than 1 measurement made (lowest to highest).*
Figure 4.2.9 *Change in results for the 11 children with at least one result above the 99th percentile and two measurements made.*
Figure 4.2.10 *Change in results for the 11 children with at least one result above the 99th percentile and 3 measurements made.*
Figure 4.2.11 *Long-term biological variation in healthy children.*
Figure 4.2.12 *TnI biological variation by gender in 8, 10 and 12 year old children.*

CHAPTER 4.3
Figure 4.3.1 *Distribution of cTnI concentration in a population of 450 healthy 12 year old children.*
Figure 4.3.2 *Distribution of cTnI concentration in the central 95% of a population of 213 healthy 12 year old males.*
Figure 4.3.3 *Normality plot of data in Figure 4.3.2, showing no significant difference to a Gaussian distribution.*
Figure 4.3.4 *Non Gaussian distribution of cTnI concentration in the central 95% of a population of 237 healthy 12 year old females.*
Figure 4.3.5 *Gaussian distribution of cTnI concentration in the central 95% of a population after 2 highest 12 year old female results excluded.*

CHAPTER 4.4
Figure 4.4.1 *The troponin concentration in the blood of the same cohort of children, at ages 8, 10 and 12 years.*
Figure 4.4.2 *Troponin positive results by school over different years. (2005,2007,2009)*

CHAPTER 4.5
Figure 4.5.1 *Study data analysis algorithm*
Figure 4.5.2A *All subjects <75 years old with Dixon outlier exclusion (15) only.*
Figure 4.5.2B *All subjects <75 years old with full exclusion criteria applied.*
Figure 4.5.2C *Male subjects <75 years old with Dixon outlier exclusion (15) only.*
Figure 4.5.2D *Male subjects <75 years old with full exclusion criteria applied.*
Figure 4.5.2E *Female subjects <75 years old with Dixon outlier exclusion (15) only.*
Figure 4.5.2F *Female subjects <75 years old with full exclusion criteria applied.*
CHAPTER 5.2
Figure 5.2.1 Cartoon of hepatocyte bleb formation during ischemia and reperfusion. 215
Figure 5.2.2 Microbleb formation of adult cultured cardiac myocytes. A baseline. B 30 min of anoxia. 216
Figure 5.2.3 Mechanism of troponin release. 219

CHAPTER 5.3
Figure 5.3.1 Survival predicted by the old cTnT assay adjusted for all the covariates entered into the Cox regression model. 233
Figure 5.3.2 ROC curve for standard cTnT and hs-cTnT (ng/L) for predicting all-cause mortality. 235
Figure 5.3.3 Kaplan–Meier curve for hs-cTnT cut-off point of 24.15 ng/L. 236

CHAPTER 5.4
Figure 5.4.1 Raw cardiac intervals from a subject’s electrocardiograph recordings during the pre-exercise and recovery periods 249
Figure 5.4.2 Time-domain and non-linear parameters of cardiac intervals before exercise (Pre) and during recovery (15-, 30-, 45-, 60-min & 24h). 255
Figure 5.4.3 The QT interval corrected for heart rate (QTc, a), QT interval variability index (QTvi, b) and ratio of the QT/RR interval approximate entropy (QT/RR ApEn, c) before exercise (Pre) and during recovery (15-, 30-, 45-, 60-min & 24h). 256
Figure 5.4.4 Participant hs-cTnT response to exercise. 257
Figure 5.4.5 Participant hs-cTnI response to exercise 258
Figure 5.4.6 High sensitivity cardiac troponin T (hs-cTnT) concentrations before exercise (Pre-exercise) and during recovery (60 min and 24 hours). 259
Figure 5.4.7 High sensitivity cardiac troponin I (hs-cTnI) concentrations before exercise (Pre-exercise) and during recovery (60 min and 24 hours). 260
Figure 5.4.8 Average heart rate during a 2 hour constant load cycling test and relative increase in high sensitivity cardiac troponin T (hs-cTnT) concentration 60-min after the cycling test. 261

CHAPTER 5.6
Figure 5.6.1 Random Forest analysis of variable importance. 294
Figure 5.6.2 Decision tree: cTnI at presentation 299
Figure 5.6.3 Decision tree: delta cTnI (from presentation to 2 hours post presentation) 299
Figure 5.6.4 Median and inter quartile range for patients with observed MACE, stable cardiac conditions and no cardiac events. 301
Figure 5.6.5 ROC curve using PCA determined troponin algorithm 302
Figure 5.6.6 Abbreviated random forest analysis of stable cardiac patient cohort 303
Figure 5.6.7 SVM classification plot 304
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>American College of Cardiology</td>
</tr>
<tr>
<td>ACS</td>
<td>Acute coronary syndrome</td>
</tr>
<tr>
<td>ADAPT</td>
<td>Accelerated Diagnostic protocol to Assess Patients with chest pain</td>
</tr>
<tr>
<td>ADP</td>
<td>Accelerated diagnostic protocol</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine transaminase</td>
</tr>
<tr>
<td>AMI</td>
<td>Acute myocardial infarction</td>
</tr>
<tr>
<td>APACE</td>
<td>Advantageous Predictors of Acute Coronary Syndromes Evaluation</td>
</tr>
<tr>
<td>ApEn</td>
<td>Approximate entropy</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under curve</td>
</tr>
<tr>
<td>BNP</td>
<td>B-type natriuretic peptide</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary artery disease</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>CK</td>
<td>Creatine Kinase</td>
</tr>
<tr>
<td>CKD-EPI</td>
<td>Chronic Kidney Disease Epidemiological Collaboration</td>
</tr>
<tr>
<td>CK-MB</td>
<td>Creatine Kinase MB isoenzyme</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical Laboratory Standards International</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>cTn</td>
<td>Cardiac troponin</td>
</tr>
<tr>
<td>cTnI</td>
<td>Cardiac troponin I</td>
</tr>
<tr>
<td>cTnT</td>
<td>Cardiac troponin T</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>CV\textsubscript{a}</td>
<td>Analytical variation (imprecision)</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>CV\textsubscript{g}</td>
<td>Between individual variation</td>
</tr>
<tr>
<td>CV\textsubscript{i}</td>
<td>Within individual variation</td>
</tr>
<tr>
<td>CV\textsubscript{t}</td>
<td>Total variation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>eGFR</td>
<td>Estimate of the glomerular filtration rate</td>
</tr>
<tr>
<td>EQA</td>
<td>External quality assessment</td>
</tr>
<tr>
<td>ESC</td>
<td>European Society of Cardiology</td>
</tr>
<tr>
<td>ESRD</td>
<td>End-stage renal disease</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GET</td>
<td>Gas exchange threshold</td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma glutamyl transpeptidase</td>
</tr>
<tr>
<td>HA</td>
<td>Heterophile antibody</td>
</tr>
<tr>
<td>HAMA</td>
<td>Heterophilic anti mouse antibody</td>
</tr>
<tr>
<td>HbA1C</td>
<td>Haemoglobin A1C</td>
</tr>
<tr>
<td>HRV</td>
<td>Heart rate variability</td>
</tr>
<tr>
<td>hs-cTnI</td>
<td>High sensitivity troponin I</td>
</tr>
<tr>
<td>hs-cTnT</td>
<td>High sensitivity troponin T</td>
</tr>
<tr>
<td>IFCC</td>
<td>International Federation of Clinical Chemistry</td>
</tr>
<tr>
<td>II</td>
<td>Index of individuality</td>
</tr>
<tr>
<td>IQC</td>
<td>Internal Quality control</td>
</tr>
<tr>
<td>ISO</td>
<td>International organisation of standards</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>Ln</td>
<td>Natural log</td>
</tr>
<tr>
<td>LoB</td>
<td>Limit of blank</td>
</tr>
<tr>
<td>LoD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>LOOK</td>
<td>Lifestyle Of Our Kids</td>
</tr>
<tr>
<td>LoQ</td>
<td>Limit of quantitation</td>
</tr>
<tr>
<td>LVEF</td>
<td>Left ventricular ejection fraction</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>MACE</td>
<td>Major adverse cardiac event</td>
</tr>
<tr>
<td>MDRD</td>
<td>Modification of Diet in Renal Diseased</td>
</tr>
<tr>
<td>MDS</td>
<td>Classical multidimensional scaling</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>ng</td>
<td>Nanograms</td>
</tr>
<tr>
<td>NPV</td>
<td>Negative predictive value</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>non ST-elevation myocardial infarction</td>
</tr>
<tr>
<td>NTproBNP</td>
<td>N-terminal pro B type natriuretic peptide</td>
</tr>
<tr>
<td>p</td>
<td>Probability</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal components analysis</td>
</tr>
<tr>
<td>PoCT</td>
<td>Point of Care Testing</td>
</tr>
<tr>
<td>PPV</td>
<td>Positive predictive value</td>
</tr>
<tr>
<td>PSE</td>
<td>Prolonged strenuous exercise</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control</td>
</tr>
<tr>
<td>RCV</td>
<td>Reference Change Value</td>
</tr>
<tr>
<td>RMSSD</td>
<td>Root mean squares of successive differences</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver operator curve</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error mean</td>
</tr>
<tr>
<td>STEMI</td>
<td>ST-segment-elevation myocardial infarction</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>TIMI</td>
<td>Thrombolysis in Myocardial Infarction</td>
</tr>
<tr>
<td>Tn</td>
<td>Troponin</td>
</tr>
<tr>
<td>TnC</td>
<td>Troponin C</td>
</tr>
<tr>
<td>TnI</td>
<td>Troponin I</td>
</tr>
<tr>
<td>TnT</td>
<td>Troponin T</td>
</tr>
<tr>
<td>U</td>
<td>Units</td>
</tr>
<tr>
<td>ug</td>
<td>Micrograms</td>
</tr>
<tr>
<td>URL</td>
<td>Upper reference limit</td>
</tr>
<tr>
<td>VO₂</td>
<td>Oxygen uptake</td>
</tr>
</tbody>
</table>