Toxicology of the *Amanita phalloides* (Death Cap) Mushroom

Detection of Amatoxins and Phallotoxins by Ultra-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry

Ashlea Norton

Bachelor of Applied Science in Forensic Studies (UC)

National Centre for Forensic Studies (NCFS)

University of Canberra ACT

A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Applied Science (Honours) at the University of Canberra

December 2014
Acknowledgements:

I would like to thank all the staff at the ACT Government Analytical Laboratory for providing me with the means to carry out this project, assisting me with obtaining blood specimens and other materials needed for my project, generally providing encouragement and support, and for making me feel like a part of the team.

I would also like to thank the staff at the University of Canberra, who were always willing to provide feedback and ideas. Thankyou to Michelle Gahan, who was so helpful and understanding when things went wrong. To my fellow honours students, thankyou for being there when I needed support, encouragement or simply an opportunity to take a break from it all. I would also like to thank the PhD students who shared their honours experiences and helped me see the light at the end of the tunnel.

Thankyou to my family and friends, who provided no shortage of encouragment and pushed me to keep going in the most difficult times. Despite living in a different state, my friends have always been there when I needed them most. To my mother, who has always believed in me, thankyou for pushing me to accomplish my goals, being my rock when I felt the pressure, and for making me believe in myself.

Finally, I would like to thank my supervisors Tamsin Kelly, Ian Whittall and Joanne Giacci, who brought this project to my attention, provided me with everything I needed and without whom none of this would have been possible. Thankyou for all your advice, patience and support throughout my project. Working with you has been a fantastic experience for which I will always be grateful.
Abstract

The increasing number of *Amanita phalloides* poisoning cases in Australia and lack of efficient treatment options has emphasised the need for detection methods which can be applied in forensic and clinical toxicology. In this study, an existing method utilised by Nomura et al. \cite{1} was adapted for the detection of *A. phalloides* toxins, \(\alpha\)-amanitin, \(\beta\)-amanitin and phalloidin, in whole blood specimens using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Various parameters were evaluated in order to develop an optimised method, which was then validated.

Optimisation of the MRM parameters was conducted using MS/MS with an electrospray interface in positive ionisation mode. This mode was found to give the greatest number of stable transitions and far greater sensitivity than negative ionisation mode. Resolution of the two amanitins was achieved using a Waters ACQUITY UPLC BEH C18 column (2.1 mm x 150 mm) and a mobile phase combination of 5 mM ammonium formate with 0.05% formic acid : 0.1% formic acid in water at a flow rate of 0.4 mL/min. The total run time of the method was 8 minutes. Two internal standards, virginiamycin B and rifampicin, were evaluated with rifampicin being chosen as the internal standard.

Samples were diluted prior to undergoing solid-phase extraction. The sample preparation method utilised a dilution step followed by SPE. Several columns were trialled, with the UCT Clean Up C18 column providing the best recovery. The SPE method was adapted from that outlined in Nomura et al. \cite{1}

The overall developed method was validated according to NATA guidelines \cite{2} and methods outlined by Shah et al. \cite{3} The parameters evaluated included selectivity, matrix effects, linearity, recovery, sensitivity, precision and limits of detection and quantification. The method produced good selectivity for each analyte, however significant matrix effects were encountered for the analytes which affected further results. Linearity studies were performed over the range of 25-500 ng/mL for the amanitins and 5-100 ng/mL for phalloidin, and gave correlation coefficients of 0.9731, 0.9825 and 0.9872 for \(\alpha\)-amanitin, \(\beta\)-amanitin and phalloidin respectively. Average recoveries ranged from 79.46%-107.99% for \(\alpha\)-amanitin, 46.96-62.19% for \(\beta\)-amanitin and 6.62-12.45% for phalloidin, suggesting the extraction method needs further improvement. The method exhibited poor sensitivity for the analytes, with slopes of 0.0031, 0.0022 and 0.0002 for \(\alpha\)-amanitin, \(\beta\)-amanitin and phalloidin.
respectively. The method was found to be precise for each of the analytes and showing no significant difference between data points, with p-values of 0.4279 for α-amanitin, 0.7265 for β-amanitin and 0.7814 for phalloidin. Limits of detection were determined to be 25 ng/mL for both amanitins and 20 ng/mL for phalloidin. Limits of quantification were determined to be 75 ng/mL for the amanitins and 60 ng/mL for phalloidin. Overall, the developed method did not pass validation, however offers a good basis for further work.
Table of Contents

Acknowledgements: ... ii
Abstract ... iii
List of Appendices .. vii
List of Tables ... viii
List of Figures .. x
1. Introduction ... 1
 1.1. Pharmacology and Toxicology of Cyclopeptides ... 1
 1.2. Introduction to Australia and Spread of A. phalloides .. 3
 1.3. Clinical Treatment of A. phalloides Poisoning ... 5
 1.4. Review of Methods in Literature for Detection of Amatoxins and Phallotoxins 5
 1.4.1. Sample Preparation .. 6
 1.4.2. Liquid Chromatography .. 15
 1.4.3. Mass Spectrometry .. 17
 1.5. Aims of Study .. 24
2. Materials and Methods .. 25
 2.1. General ... 25
 2.1.1. Chemicals and Reagents .. 25
 2.1.2. Preparation of Buffers ... 26
 2.1.3. Source of Blood Specimens .. 26
 2.1.4. Glassware and Syringes .. 26
 2.1.5. UPLC-MS/MS .. 27
 2.1.6. Solid Phase Extraction ... 27
 2.1.7. Other Instrumentation ... 28
 2.2. Method Development ... 29
 2.2.1. Characterisation ... 29
 2.2.2. Choice of Mobile Phase .. 30
 2.2.3. Choice of Gradient System ... 31
 2.2.4. Choice of Reconstitution Solvent ... 31
 2.2.5. Sample Preparation .. 31
 2.2.6. Choice of Internal Standard ... 32
 2.2.7. Parameters for Final Developed Method ... 32
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3. Validation</td>
</tr>
<tr>
<td>2.3.1. Selectivity</td>
</tr>
<tr>
<td>2.3.2. Matrix effects</td>
</tr>
<tr>
<td>2.3.3. Linearity</td>
</tr>
<tr>
<td>2.3.4. Recovery</td>
</tr>
<tr>
<td>2.3.5. Sensitivity</td>
</tr>
<tr>
<td>2.3.6. Precision</td>
</tr>
<tr>
<td>2.3.7. Limits of Detection and Quantification</td>
</tr>
<tr>
<td>3. Results and Discussion</td>
</tr>
<tr>
<td>3.1. Method Development</td>
</tr>
<tr>
<td>3.1.1. Characterisation</td>
</tr>
<tr>
<td>3.1.2. Choice of Mobile Phases</td>
</tr>
<tr>
<td>3.1.3. Choice of Column</td>
</tr>
<tr>
<td>3.1.4. Choice of Gradient System</td>
</tr>
<tr>
<td>3.1.5. Choice of Reconstitution Solvent</td>
</tr>
<tr>
<td>3.1.6. Sample Preparation</td>
</tr>
<tr>
<td>3.1.7. Choice of Internal Standard</td>
</tr>
<tr>
<td>3.2. Validation</td>
</tr>
<tr>
<td>3.2.1. Selectivity</td>
</tr>
<tr>
<td>3.2.2. Matrix effects</td>
</tr>
<tr>
<td>3.2.3. Linearity</td>
</tr>
<tr>
<td>3.2.4. Recovery</td>
</tr>
<tr>
<td>3.2.5. Sensitivity</td>
</tr>
<tr>
<td>3.2.6. Precision</td>
</tr>
<tr>
<td>3.2.7. Limits of Detection and Quantification</td>
</tr>
<tr>
<td>4. Conclusions and Recommendations</td>
</tr>
<tr>
<td>4.1. Conclusions</td>
</tr>
<tr>
<td>4.2. Recommendations</td>
</tr>
</tbody>
</table>

References 67

Appendices 72
List of Appendices

Appendix 1: Drug Mixtures used for Selectivity ... 73
Appendix 2: Linearity Plots ... 75
Appendix 3: Data Generated from ANOVA Single Factor Analysis 78
Appendix 4: Signal to noise (S/N) Data ... 81
List of Tables

Table 1.1. Sample preparation and extraction methods for mushroom tissue.7
Table 1.2. Sample preparation and extraction methods for biological specimens.8
Table 1.3. Solid phase extraction methods and results from amatoxin literature for mushroom tissue. ...12
Table 1.4. Solid-phase extraction methods and results from amatoxin literature for biological matrices. ..13
Table 1.5. LC methods and parameters encountered in literature for amatoxins16
Table 1.6. LC-MS and LC-MS/MS parameters and fragment ions for amatoxins and phallotoxins in literature. ..20
Table 1.7. LC-TOF-MS parameters and fragment ions for amatoxins and phallotoxins in literature. ..21
Table 1.8. Limits of detection and quantification for direct mushroom extracts.22
Table 1.9. Limits of detection and quantification for biological specimen extracts.23
Table 2.1. Preparation of stock solutions in 1 mL methanol. ..25
Table 2.2. Analysis of standards using ESI- mode. ...29
Table 2.3. Analysis of standards using ESI+ mode. ...30
Table 2.4. Mobile phase combinations trialled in method development.30
Table 3.1. Transitions and parameters found using ESI+ mode. ...36
Table 3.2. Transitions and parameters found using ESI- mode. ...37
Table 3.3. Transitions and parameters found using ESI+ mode upon increasing concentration of analytes. ...38
Table 3.4. Comparison of peak height of quantifier ion at 25 ng/mL within standard mix using ESI+ and ESI- mode ...39
Table 3.5. Mobile phases used and optimal parameters found for each.40
Table 3.6. Columns used and optimal parameters found for each. ..42
Table 3.7. Extraction efficiencies of standards at 75 ng/mL (ESI- mode).49
Table 3.8. Extraction efficiencies of standards at 200 ng/mL (ESI+ mode).50
Table 3.9. Methods and variations trialled for SPE. ...52
Table 3.10. Differences in peak area resulting from various extraction methods53
Table 3.11. Comparison of peak area for quantifier ion using 100 ng/mL pure solutions with and without filtering step. ...54
Table 3.12. Comparison of internal standards within a 25 ng/mL mixture. ..55
Table 3.13. Average extraction efficiency and recovery values for α-amanitin, β-amanitin
and phalloidin..62
List of Figures

Figure 1.1. Chemical structures of α-amanitin and β-amanitin ... 2
Figure 1.2. Chemical structure of phalloidin ... 3
Figure 1.3. Comparison of A. phalloides and V. volvacea ... 5
Figure 1.4. Basic principle of solid phase extraction ... 11
Figure 1.5. Mechanism of electrospray ionisation ... 18
Figure 1.6. Mechanism of single ion monitoring ... 19
Figure 1.7. Mechanism of multiple reaction monitoring ... 19
Figure 3.1. Possible fragment for m/z 259 .. 35
Figure 3.2. Separation of α-amanitin and β-amanitin using different mobile phases 41
Figure 3.3. Separation of α-amanitin and β-amanitin using different columns 43
Figure 3.4. Gradient program developed for amatoxin and phallotoxin analysis 44
Figure 3.5. Investigation of reconstitution solvent ... 46
Figure 3.6. Linearity plots for α-amanitin, β-amanitin and phalloidin .. 58
Figure 3.7. Residual plots for α-amanitin, β-amanitin and phalloidin .. 60