Preservation of human muscle in conditions commonly associated with mass disasters

by Aidan Allen-Hall
Bachelor of Applied Science (Forensic Investigation)

A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Applied Science (Honours) at the University of Canberra, February 2011

Faculty of Applied Science
ABSTRACT

Muscle tissue is sampled during Disaster Victim Identification (DVI) operations to identify victims by DNA analysis. The tissue is preserved to prevent DNA degradation and improve the chances of obtaining good short tandem repeat (STR) profiles. Biological samples are normally preserved at low temperatures. However, refrigeration may not always be readily available in the field. Therefore, alternative preservation methods that do not require refrigeration would be useful. Because DVI operations often occur in remote locations under adverse conditions, these alternative methods should ideally make use of substances that are inexpensive, non-toxic and readily available in the field (or easily transportable).

Human muscle tissue was stored in a number of preservatives at 35°C to simulate the conditions that may be encountered during DVI operations in warm conditions. The tissue was stored for up to one month, to represent the amount of time that may be required to transport the samples back to the laboratory. DNA was quantified using Quantifiler™ Human DNA Quantitation Kit (Applied Biosystems) and profiled using AmpF(STR® Identifiler® PCR Amplification Kit (Applied Biosystems) to determine the success of each method.

The following preservatives were successful under the conditions of the study when sampling DNA directly from the tissue and full STR profiles were obtained after one month’s storage: 1) DMSO-EDTA-NaCl, 2) 70 % ethanol, 3) DNA Genotek Tissue Stabilising Kit, 4) Biomatrica® DNAgard™, and 5) oven drying. DNA could also be extracted directly from aliquots of the DNA Genotek Tissue Stabilising Kit and Biomatrica® DNAgard™ preservatives, giving them an advantage over other methods because the tissue did not require handling. Sodium chloride was shown to be less successful than these methods but still produced full DNA profiles after storage for one month.
ACKNOWLEDGEMENTS

Firstly, I would like to express appreciation to my faculty supervisor, Dr Dennis McNevin. Thank you for; the opportunity; your guidance; always having an open door; your help with obtaining those elusive tissue samples; taking the time to assist me with the necessary forensic DNA techniques; for editing this thesis; and last but not least, the uplifting compliments. Good luck with the new addition to your family and I wish you all the best for the future.

Secondly, thank you to Ms Mojca Keglovic and Dr Cindy Lim from the Australian Federal Police. Thanks for organising funding for the expensive DNA consumables used during the research. It has been an incredibly busy year and we haven’t seen much of each other, but I look forward to working with the two of you in the future.

Thirdly, thanks to both Dr Paul Smith and Dr Jennie Scarvell from the Trauma and Orthopaedic Research Unit at the Canberra Hospital. Without the tissue samples you organised, my research would likely have followed a different path.

Finally, and perhaps most importantly, I would like to thank the people that have supported me in my research, without having an official role. Thanks Mum and Dad for everything, I love you both! Thanks to Samantha Venables for general support and assistance in the laboratory. To my colleagues at the Office of Chemical Safety and Environmental Health, thanks for the job that can almost be described as perfect for someone doing part-time research.
TABLE OF CONTENTS

Title i
Abstract ii
Certificate of Authorship iii
Acknowledgements iv
Table of Contents v
List of Tables vii
List of Figures viii
Abbreviations ix

Chapter 1 - Introduction 1
1.1 Preservation of Forensic Samples 1
 1.1.1 Overview of Forensic Profiling 1
 1.1.2 Relevance of Forensic Profiling 1
 1.1.3 Decomposition Process 2
 1.1.4 DNA Damage 3
 1.1.5 Mass Disasters 4
 1.1.6 Forensic Preservation Techniques 5
 1.1.7 Other Preservation Techniques 6
 1.1.8 Mechanism of Preservation 10
 1.1.9 Conclusions and Research Gaps 11
1.2 Considerations for Forensic Preservation Techniques 11
 1.2.1 General Considerations 11
 1.2.2 Proposed Forensic Preservation Methods 13
1.3 Experimental Aims 14

Chapter 2 - Methods 15
2.1 Experimental design 15
 2.1.1 Tissue Samples 15
 2.1.2 Preservation Methods 15
 2.1.3 Experimental Conditions 16
2.2 DNA Analysis 18
 2.2.1 Sterilisation Measures 18
 2.2.2 DNA Extraction 18
 2.2.3 DNA Quantitation 19
 2.2.4 DNA Profiling 20
 2.2.5 Profile Analysis 20

Chapter 3 - Results 22
3.1 Study Conduct 22
 3.1.1 Tissue Mass 22
 3.1.2 Tissue Morphology 23
 3.1.3 Other Comments 23
3.2 DNA Quantity
 3.2.1 DNA Quantity at Day 0
 3.2.2 DNA Quantity from Tissue Extractions
 3.2.3 DNA Quantity from Preservative Extracts
3.3 DNA Profiling
 3.3.1 Profiles from Tissue Extracts
 3.3.2 Profiles from Preservative Extracts

Chapter 4 - Discussion
 4.1 Success of the Preservation Methods
 4.1.1 General Considerations
 4.1.2 DMSO
 4.1.3 Ethanol
 4.1.4 NaCl
 4.1.5 DNA-G
 4.1.6 RNAlater
 4.1.7 Tent Buffer
 4.1.8 Dgard
 4.1.9 Oven Drying and Degradation Control Sample
 4.2 Comparison of Preservation Methods
 4.2.1 Direct Comparison of Methods
 4.2.2 Recommendations
 4.3 Future Directions

Chapter 5 - Conclusions

References

Appendix I - Reagent/Constituent Details

Appendix II - Tissue Masses and Quantifiler Results

Appendix III - DNA Profiles
LIST OF TABLES

Main report
Table 1. Published research showing successful results for DMSO-based preservative. 8
Table 2. Comparison of lysis buffers. 9
Table 3. Summary of proposed preservation methods and constituents. 14
Table 4. Preservation methods and volume. 16
Table 5. Mass of tissue samples placed in each preservative. 22
Table 6. Comments on tissue morphology. 23
Table 7. DNA recovered from day 0. 25
Table 8. Summary of DNA recovered for each sample during the 28-day period. 29
Table 9. Number of reportable alleles from Identifiler® profiles. 30
Table 10. Comparison of successful preservation methods. 44

Appendices
Table i. Constituent details for preservatives. 55
Table ii. Mass of day 0 tissue samples with Quantifiler™ results. 56
Table iii. Mass of tissue samples at each time point with Quantifiler™ results. 56
Table iv. Quantifiler™ results for liquid preservative extractions. 57
LIST OF FIGURES

Main report
- Figure 1. Diagrammatic representation of the experimental design for one sample. 18
- Figure 2. Examples of degraded and non-degraded DNA profiles. 21
- Figure 3. Mean DNA quantity vs time for tissue extracts. 27
- Figure 4. Mean DNA quantity vs time for preservative extracts. 28
- Figure 5. Degradation observed for TENT buffer tissue extracts (Sample 2). 31
- Figure 6. Degradation observed for DMSO preservative extracts (Sample 3). 32

Appendices
- Figure i. DNA profiles for Day 0 samples. 58
- Figure ii. DNA profiles for Sample 1 tissue extracts. 60
- Figure iii. DNA profiles for Sample 1 preservative extracts. 64
- Figure iv. DNA profiles for Sample 2 tissue extracts. 66
- Figure v. DNA profiles for Sample 2 preservative extracts. 70
- Figure vi. DNA profiles for Sample 3 tissue extracts. 72
- Figure vii. DNA profiles for Sample 3 preservative extracts. 75
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>Applied Biosystems™</td>
</tr>
<tr>
<td>A</td>
<td>adenine</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>CE</td>
<td>capillary electrophoresis</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>Dgard</td>
<td>Dgard™ preservative (Biomatrica®)</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>distilled deionised water</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide preservative (20 % DMSO, 0.25 M EDTA, saturated with NaCl, pH 8.0)</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNA-G</td>
<td>DNA Genotek Tissue Stabilising Kit</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>DVI</td>
<td>disaster victim identification</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EIOH</td>
<td>ethanol preservative</td>
</tr>
<tr>
<td>EIOH-E</td>
<td>ethanol-EDTA preservative</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
<tr>
<td>INTERPOL</td>
<td>International Criminal Police Organisation</td>
</tr>
<tr>
<td>LST</td>
<td>lysis, storage and transportation buffer</td>
</tr>
<tr>
<td>NaCl</td>
<td>solid sodium chloride preservative</td>
</tr>
<tr>
<td>OvnD</td>
<td>oven drying preservation</td>
</tr>
<tr>
<td>PPE</td>
<td>personal protective equipment</td>
</tr>
<tr>
<td>rfu</td>
<td>relative fluorescence unit</td>
</tr>
<tr>
<td>RFLP</td>
<td>restriction fragment length polymorphism</td>
</tr>
<tr>
<td>RNA/later</td>
<td>RNA/later®</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>STR</td>
<td>short tandem repeats</td>
</tr>
<tr>
<td>TENT</td>
<td>TENT preservative (10 mM Tris base, 10 mM EDTA, 100 mM NaCl, 2% Tween 20)</td>
</tr>
<tr>
<td>T</td>
<td>thymine</td>
</tr>
<tr>
<td>TORU</td>
<td>Trauma and Orthopaedic Research Unit (Canberra Hospital)</td>
</tr>
<tr>
<td>UC</td>
<td>University of Canberra</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VNTR</td>
<td>variable number tandem repeats</td>
</tr>
</tbody>
</table>