This thesis is available in print format from the University of Canberra Library.

If you are the author of this thesis and wish to have the whole thesis loaded here, please contact the University of Canberra Library at e-theses@canberra.edu.au Your thesis will then be available on the www providing greater access.
A COMPARISON OF FIELD AND LABORATORY TESTING OF SPORTS SPECIFIC FITNESS FOR FEMALE FIELD HOCKEY PLAYERS

Nining Widyah Kusnanik

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Applied Science at the University of Canberra

December 2001
I would like to thank the following people for their support whilst undertaking this thesis:

- Associate Professor Alan Roberts who was my project supervisor. He provided me continuous support, encouragement, sound advice and checked my drafts and ideas for long hours. He also provided me with much valued advice, feedback, criticism, and organisation of the field and laboratory equipment and instructions and helped me in gathering the subjects.

- Each study subject who formed the basis of this research.

- Kelly Linaker and Ben Rattray who helped me with great assistance during the testing in Australia.

- Prof. Dr. Primadi Tabrani, the Indonesian Hockey President, who gave me permission to collect data on the Indonesian female field hockey players and provided me some information about hockey in Indonesia.

- Drs. Djamilus and Hafiludin, S.Pd who helped me during the testing in Indonesia.

- Peter Fogarty and Tom Kaveney who allowed their athletes to participate in this study.

- Don Jones who provided some information about hockey and helped me by reading my drafts.

- My family who provided continued support throughout my academic career especially, my parents who looking after my daughter Cindy Olga Rizky.
ABSTRACT

There are many methods to measure the physical fitness of athletes, including tests that can be applied in the field or in the laboratory. Much of the recent research with regard to fitness of team sport players has been undertaken using laboratory testing to measure aerobic power, anaerobic power and capacity, strength and flexibility. Field tests are an alternative method to measure the fitness of players without the expense, time and expertise required for the laboratory testing, especially in developing countries.

The purpose of this study is to establish procedures for the application of contemporary sports science practice for Indonesian female field hockey players, including determination of the precision of field tests of the physical and performance characteristics of field hockey players in Indonesia; determination of the physical and performance characteristics of Indonesian female field hockey players; identification of the performance demands and distance covered during competitive field hockey at the national level in Indonesia; comparison of the physical and performance characteristics of national level female field hockey players in Indonesia with those of club level players in Australia; and determination of the relationships between field and laboratory tests of physiological performance capacity for field hockey.

This study was conducted on 26 Indonesian and 11 Australian female field hockey players. The mean values for age, height, mass, BMI and skinfold thickness of the Indonesian players were 22.0±3.4 years, 156.3±4.9cm, 51.2±6.2kg, 20.9±2.0kg-m⁻², and 99.4±17.9mm, respectively. The mean values for VO₂max (20m srt), VJ, leg power, SBJ, sit and reach, and 40m sprint were 38.7±3.2ml-kg⁻¹-min⁻¹, 39.3±4.3cm, 70.7±1.0kg-m-sec⁻¹, 183.3±17.0cm, +14.7±5.7cm, 6.99±10.39s, respectively. The mean HR values at the end of the first and second half of a game of field hockey were 171.0±8.7bpm and 161.3±18.2bpm, respectively. The mean values for blood lactate concentration at the end of the first and second half of play were 5.3±1.2mmol-L⁻¹ and 5.1±1.7mmol-L⁻¹, respectively. The mean total distance covered by the players during the complete game was 2841.8±432.2m. The mean time spent walking and at more than walking pace (jogging, running and sprinting) during the game were 46:08min and 24:18min, respectively. The mean values for temperature and humidity were 38.2±4.1°C and 57.5±9.8%, respectively.

The mean values for age, height, mass, BMI and skinfold thickness of the Australian players were 24.0±3.9 years, 165.7±3.4cm, 64.8±4.1kg, 24.0±1.6kg-m⁻², and 77.9±17.3mm, respectively. The mean values for VO₂max (20m srt), VJ, leg power, SBJ, sit and reach, and 40m sprint were 42.1±4.7ml-kg⁻¹-min⁻¹, 37.5±4.4cm, 87.2±7.0kg-m-sec⁻¹, 174.9±18.3cm, +11.2±6.4cm, and 6.46±0.30s, respectively. The mean values for VO₂max (treadmill running), isokinetic strength, 10 sec maximal ergometer sprint test, and 5 x 6 sec repeat effort cycle ergometer test were 46.3±3.8ml-kg⁻¹-min⁻¹, 88.2±10.6N-m (left hamstring), 58.1±13.8N-m (right hamstring), 152.9±27.0N-m (left quadriceps), 152.6±19.2N-m (right quadriceps), 58.6±6.9% (left hamstring/quadriceps ratio), 57.9±5.3% (right hamstring/quadriceps ratio), 103.7±10.83kg⁻¹ (total work), 12.5±1.0W-kg⁻¹ (peak power), 261.2±25.63kg⁻¹ (total work), 9.3±5.4% (work decrement) and 5.7±3.8% (power decrement).
respectively. The mean values for temperature and humidity were 11.8±1.8°C (outdoor), 20.5±3.3°C (indoor), 60.4±2.6% (outdoor) and 50.6±6.8% (indoor), respectively.

There were no significant differences between Indonesian and Australian players in age, VO$_2$max (20m SRT), VJ, SBJ, S&R, and acceleration measurements (p>0.05). However, there were significant differences between Indonesian and Australian players in height, mass, BMI, skinfold thickness, leg power, speed, and combined acceleration and speed measurements (p<0.05). The Australian players were significantly taller and heavier than the Indonesian players. The Indonesian players had higher values for the sum of 7 skinfolds than the Australian players. The Australian players had significantly higher values for leg power than the Indonesian players. The Australian players were significantly faster than the Indonesian players.

Among the Australian players there was a significant difference between the VO$_2$max value during treadmill running and the VO$_2$max estimated from the 20m SRT (t=0.003, p<0.05). There was a significant correlation between the VO$_2$max value during treadmill running and the VO$_2$max estimated from the 20m SRT (r=0.66, p<0.05). The correlations between the leg power (estimated from the vertical jump test) and the isokinetic power of the quadriceps muscle group was not significant (p>0.05). The correlation between the running speed (estimated from the combined acceleration and speed score from the 40m sprint test) and the peak power from the 10s maximal ergometer sprint test (r=-0.55) was not significant (p>0.05).

In conclusion, the present study found that the Indonesian female field hockey players (at the national level) were comparable to the Australian female field hockey players (at the club level) in some physical and performance test results. However, they were also different on other physical and performance characteristic measurements, with the Indonesian players generally have lower values, for other performance measurements.
CONTENTS PAGE

PAGE NO.

TITLE PAGE...i
ACKNOWLEDGEMENTS..ii
ABSTRACT...iii
CERTIFICATE OF COMPLETION OF REQUIREMENTS......................v
CERTIFICATE OF AUTHORSHIP OF THESIS.................................vi
CONTENTS PAGE..vii
LIST OF TABLES..xiii
LIST OF FIGURES...xv
ABBREVIATIONS..xvii

CHAPTER 1 – LITERATURE REVIEW......................................1
INTRODUCTION..1
HISTORICAL BACKGROUND OF FIELD HOCKEY.....................1
FIELD HOCKEY IN INDONESIA...3
TECHNICAL DEVELOPMENT OF FIELD HOCKEY....................4
PHYSIOLOGICAL RESPONSES TO PLAYING FIELD HOCKEY.......6
PHYSICAL AND PERFORMANCE CHARACTERISTICS OF FIELD
HOCKEY PLAYERS..8
 Age..8
 Height...11
 Mass...15
 Body Mass Index (BMI)..18
 Skinfold Thickness...21
 Percentage Body Fat..24
 Somatotype..27
 Maximal Oxygen Uptake (VO₂max)..................................29
 Strength..33
 Grip Strength..33
 Isokinetic Strength..35
 Anaerobic Power Capacity...35
 Standing Broad Jump..36
CHAPTER 3 – RESULTS ... 69
The Indonesian Female Field Hockey Players .. 69
Physical Characteristics ... 69
Age ... 69
Height ... 69
Mass ... 69
BMI ... 69
Skinfold Thickness ... 69
Physical Performance Tests ..70
 VO$_2$max...70
 Vertical Jump...70
 Standing Broad Jump...70
 Sit and Reach..71
 Acceleration and Speed...71
Game Analysis..71
 Heart Rate..71
 Blood Lactate..72
 Distance Covered...72
 Time Spent Walking/Running.......................................75
Environmental Conditions..75
The Australian Female Field Hockey Players................................77
 Physical Characteristics ...77
 Age ..77
 Height ..77
 Mass ..77
 BMI ...77
 Skinfold Thickness..77
Physical Performance Tests ...78
 Field Tests ...78
 VO$_2$max...78
 Vertical Jump..78
 Standing Broad Jump..78
 Sit and Reach..78
 Acceleration and Speed..78
 Laboratory Tests ...79
 VO$_2$max...79
 Isokinetic Strength..79
 Isokinetic Power...80
 10 Seconds Maximal Ergometer Sprint........................81
 5 x 6 Seconds Repeat Effort Test (cycle Ergometer)........81
Environmental Conditions..81
Comparison of Physical Characteristics and Physical Performance Test Results between the Indonesian and Australian Female Field Hockey Players

Physical Characteristics

Physical Performance Test Results

Comparison of Field and Laboratory Tests of the Australian Female Field Hockey Players

CHAPTER 4 – DISCUSSION

Physical and Physiological Demands of Playing Field Hockey Game at the National Level in Indonesia

Heart Rate
Blood Lactate
Distance Covered
Time Spent Walking/Running

Comparison of Physical Characteristics and Physical Performance Field Test Results between the Indonesian and Australian Female Field Hockey Players

Physical Characteristics

Age
Height
Mass
BMI
Skinfold Thickness

Physical Performance Tests

Vertical Jump
Standing Broad Jump
Sit and Reach
VO₂max
Acceleration and Speed

Physical Performance Characteristics of the Australian Female Field Hockey Players Measured from Laboratory Tests

VO₂max
LIST OF TABLES

Table 1: Mean values for age (years) of field hockey players derived from literature reports. 9

Table 2: Mean values for body height (cm) of field hockey players derived from literature reports. 12

Table 3: Mean values for body mass (kg) of field hockey players derived from literature reports. 16

Table 4: Mean values for BMI (kg·m$^{-2}$) of field hockey players derived from literature reports. 19

Table 5: Mean values for sum of skinfolds (mm) of field hockey players derived from literature reports. 23

Table 6: Mean values for body fat (%) of field hockey players derived from literature reports. 25

Table 7: Mean values for somatotype of field hockey players derived from literature reports. 28

Table 8: Mean values for VO$_{2}$max (ml·kg$^{-1}$·min$^{-1}$) of the field hockey players derived from literature reports. 31

Table 9: Mean values for grip strength (kg) and isokinetic strength (N·m·kg$^{-1}$) of field hockey players derived from literature reports. 34

Table 10: Mean values for standing broad jump (cm) and stairclimb velocity (m·s$^{-1}$) of field hockey players derived from literature reports. 37

Table 11: Mean values for vertical jump (cm) of field hockey players derived from literature reports. 39

Table 12: Mean values for 10 seconds work (J·kg$^{-1}$) and peak power (W·kg$^{-1}$) of field hockey players derived from literature report. 41

Table 13: Mean values for 5 x 6 seconds maximal ergometer sprint (J·kg$^{-1}$), work decrement (%) and power decrement (%) of field hockey players derived from literature report. 43
Table 14: Mean values for acceleration and speed (s) of field hockey players derived from literature report.

Table 15: Mean values for physical and performance characteristics of field hockey players derived from literature reports.

Table 16: Skinfold measurements on the female field hockey players (adapted from Norton et al. 2000).

Table 17: Physical characteristics, physical performance test results, and game analysis results of the Indonesian female field hockey players.

Table 18: Physical characteristics and physical performance test results of the Australian female field hockey players.

Table 19: The weighted mean values for physical characteristics and physical performance test results for female field hockey players from the literature review and from the present study.

Table 20: The weighted mean values for physical performance tests results for female field hockey players from the literature review and from the present study.
LIST OF FIGURES

Figure 1: The Indonesian female field hockey players performing the 20 metre shuttle run test. 55

Figure 2: An Australian female field hockey player performing the VO2max test in the laboratory. 64

Figure 3: An Australian female field hockey player performing an isokinetic strength and power in the laboratory. 67

Figure 4: Mean heart rate responses of the athletes to playing field hockey. 73

Figure 5: Lactic acid responses of the athletes to playing field hockey (X±SD). 74

Figure 6: Values for age (years) of the Indonesian and Australian female field hockey players (X±SD). 86

Figure 7: Values for height (cm) of the Indonesian and Australian female field hockey players (X±SD). 87

Figure 8: Values for body mass (kg) of the Indonesian and Australian female field hockey players (X±SD). 88

Figure 9: Values for BMI (kg-m^-2) of the Indonesian and Australian female field hockey players (X±SD). 89

Figure 10: Values for skinfold thickness (mm) of the Indonesian and Australian female field hockey players (X±SD). 90

Figure 11: Values for vertical jump (cm) of the Indonesian and Australian female field hockey players (X±SD). 91

Figure 12: Values for leg power (kg·m·sec^-1) of the Indonesian and Australian female field hockey players (X±SD). 92

Figure 13: Values for standing broad jump (cm) of the Indonesian and Australian female field hockey players (X±SD). 93

Figure 14: Values for sit and reach (cm) of the Indonesian and Australian female field hockey players (X±SD). 95

Figure 15: Values for VO₂max (ml·kg^-1·min^-1) of the Indonesian and Australian female field hockey players (X±SD). 96
Figure 16: Values for acceleration (s) of the Indonesian and Australian female field hockey players (X±SD).

Figure 17: Values for speed (s) of the Indonesian and Australian female field hockey players (X±SD).

Figure 18: Values for combined acceleration and speed (s) of the Indonesian and Australian female field hockey players (X±SD).

Figure 19: Correlation between the VO₂max (ml·kg⁻¹·min⁻¹) during treadmill running and the VO₂max estimated from the 20 metre shuttle run test.

Figure 20: Correlation between the leg power (kg·m·sec⁻¹) and the isokinetic power (N·m).

Figure 21: Correlation between the 40 metres sprint (s) and the 10 seconds maximal ergometer sprint (J·kg⁻¹).
ABBREVIATIONS

Selected abbreviations used throughout the text

b·m⁻¹: breaths per minute
bpm: beats per minute
cm: centimetre/centimetres
°C: temperature in degrees centigrade
FEO₂: fractions of oxygen in expired air
FECO₂: fractions of carbon dioxide in expired air
HR: heart rate/heart rates
J: joule/joules
J·kg⁻¹: joules per kilogram
kg: kilogram/kilograms
kg·m⁻²: kilograms per metre square
kJ·min⁻¹: kilojoules per minute
km: kilometre/kilometres
kg·m·sec⁻¹: kilograms metre per second
La: lactic acid
L·min⁻¹: litres per minute
m: metre/metres
mm: millimetre/millimetres
ml·kg⁻¹·min⁻¹: millilitres per kilogram per minute
ml·min⁻¹: millilitres per minute
mmol·L⁻¹: millimoles per litre
m·s⁻¹: metres per second
N·m: Newton metres
N·m·kg⁻¹: Newton metres per kilogram
s: second/seconds
30°·sec⁻¹: 30 degrees per second
60°·sec⁻¹: 60 degrees per second
180°·sec⁻¹: 180 degree per second
20m srt: 20 metres shuttle run test
\(V_{EO2} \): ventilatory equivalents of oxygen
\(V_{ECO2} \): ventilatory equivalents of carbon dioxide
\(VCO2 \): volume of carbon dioxide
\(VO2 \): volume of oxygen
\(VO2\text{max} \): maximum oxygen uptake
\(W \): watts
\(W\cdot kg^{-1} \): watts per kilogram