Forensics, phylogeography and population genetics: a case study using the Australasian snake-necked turtle, *Chelodina rugosa*.

By

Erika A. Alacs

BSc Molecular Biology, Murdoch University
BSc Conservation Biology, Murdoch University
Honours (First Class) Veterinary Biology, Murdoch University

A thesis in fulfillment of the requirements for the degree of

Doctor of Philosophy (Applied Science)

Institute for Applied Ecology
University of Canberra

September 2008
Statement of originality

The thesis is my original work and has not been submitted, in whole or in part, for a degree at this or any other university. Nor does it contain, to the best of my knowledge and belief, any material published or written by any other person, except as acknowledged in the footnotes, quotations or references.

Erika Alacs
September 2008
Copyright

Under Section 35 of the Copyright Act of 1968, the author of this thesis is the owner of any copyright subsisting in the work, even though it is unpublished.

Under section 31(I)(a)(i), copyright includes the exclusive right to ‘reproduce the work in a material form’. Thus, copyright is infringed by a person who, not being the owner of the copyright, reproduces or authorises the reproduction of the work, or of more than a reasonable part of the work, in a material form, unless the reproduction is a ‘fair dealing’ with the work ‘for the purpose of research or study’ as further defined in Sections 40 and 41 of the Act.

This thesis, entitled “Forensics, phylogeography and population genetics: a case study using the Australasian snake-necked turtle, *Chelodina rugosa*” must therefore be copied or used only under the normal conditions of scholarly fair dealing for the purposes of research, criticism or review, as outlined in the provisions of the Copyright Act 1968. In particular, no results or conclusions should be extracted from it, nor should it be copied or closely paraphrased in whole or in part without the written consent of the author. Proper written acknowledgement should be made for any assistance obtained from this thesis.

Copies of the thesis may be made by a library on behalf of another person provided the officer in charge of the library is satisfied that the copy is being made for the purposes of research or study.

Erika Alacs
September 2008
Statement of contribution

Because this thesis is written as a series of chapters prepared for publication in peer-reviewed journals, several people other than myself have contributed to the work, and they deserve acknowledgement. These include:

- Arthur Georges (Institute for Applied Ecology, University of Canberra), who provided guidance and supervision for all aspects of the PhD study, and assisted in the preparation of manuscripts.
- Nancy FitzSimmons (Institute for Applied Ecology, University of Canberra), who provided guidance and supervision for all aspects of the PhD study, and assisted in the preparation of manuscripts.
- James Robertson (Australian Federal Police), who provided guidance and supervision for all aspects of the PhD study, and assisted in the preparation of manuscripts.
- Damien Fordham (Institute for Applied Ecology, University of Canberra), who provided many of the genetic samples for Chapter 7.
- Fred Janzen (Iowa State University), who assisted in the preparation of the manuscript presented in Chapter 2.
- Kim Scribner (Michigan State University), who assisted in the preparation of the manuscript presented in Chapter 1.
- Mia Hillyer (Griffith University), who assisted in the development of the microsatellite markers and preparation of the manuscript presented in Chapter 5.
- Jane Hughes (Griffith University), who assisted in the preparation of the manuscript presented in Chapter 5.

These people are included as authors in the following chapters as well as the associated publications, in order of their contribution to the work. However, despite the collaborative nature of this thesis, the work within is my own, and I received no assistance other than that which is stated above.

I as primary supervisor agree with the above stated proportions of work undertaken for each of the published (or prepared for submission) peer-reviewed manuscripts contributing to this thesis:

Prof Arthur Georges Date
Acknowledgments

Many people have contributed to my PhD experience and are deserving of my acknowledgement. Some have contributed directly to my studies by offering guidance, technical advice and help in the field. Others have contributed by showing interest in my research, saying a few words of encouragement, or offering their friendship. All of these contributions have made my PhD study a truly memorable and pleasurable experience.

I would firstly like to thank my partner James Storer for his love and support. James, thank you so much for your amazing patience and encouragement. There were many trying times that I turned to you for emotional guidance. You always knew exactly how to pick me up, dust me off and send me back on my way. I look forward to supporting you wholeheartedly in your future endeavours.

Equally deserving of thanks is Arthur Georges, who was my primary supervisor. Arthur, you have been an exceptional mentor. Your supervisory style enabled me to pursue my ideas and extend myself as a scientist. You helped me to see the ‘bigger’ picture and strive to produce my best. I was inspired by your energy, drive and passion for your research that has an infectious quality. We also had some fun times together catching turtles in Arnhem Land and New Guinea. Thank you for these once-in-a lifetime opportunities.

Nancy FitzSimmons provided guidance and supervision. Nancy, your boundless enthusiasm, encouragement and always helpful advice made even the most challenging problem seem surmountable. You also opened up my eyes to the wonderful world of the Kimberleys. What a fun trip! It was such an amazing experience for me to be able to snorkel for turtles and see the world through their eyes.

James Robertson also provided supervision. James, I am very grateful for your guidance, advice, support and encouragement throughout my PhD study. I gained many insights from your perspectives in the forensic sciences.

Thank you to all of my volunteers who endured physically tough conditions working in 40 degree heat, continuous packing and unpacking of gear as we moved camp every three
days, and endless hours of turtle trapping. Thanks Megan O’Brien, Nathan Wong, Enzo Guarino, Glen Murray, Davis Steer and Cassidy Fitzcarence. I couldn’t have done the field work that culminated in this thesis without you.

My field work involved visiting many Aboriginal communities, outstations, and national parks in northern Australia. We were always greeted warmly, granted access to sites, and sometimes even offered assistance to catch the turtles. Thank you to all the traditional land owners, cattle station owners and rangers that granted us permission to visit your lands. Thank you also to all the Aboriginal women that helped us to catch turtles. I learnt much from your culture that has enriched my life. Although, I still have not mastered the art of finding those aestivating turtles!

I would also like to thank everyone in the Institute for Applied Ecology (IAE) and especially the Wildlife Genetics Laboratory group of the University of Canberra. I have been fortunate to study in this stimulating and friendly environment. Kate Hodges, Lachlan Farrington, Nicey Aitken, Alex Quinn and Anna MacDonald thank you for our discussions that helped me to solve many a technical problem. Thanks to the staff and PhD students at the IAE for friendship and support, including Carla Eisenberg, Anett Richter, ‘Prince Fred’, Marion Hoehn, Wendy Diamond, Rachel Walsh, Christina Castellano, David Wong, Stephen Sarre and Katarina Mikac. Dennis McNevin and Mike Braysher provided valuable edits on manuscripts. Sandra Georges, Murray Raff and Mark Harrison provided guidance on locating case files and assisted with access to legal databases.

My family deserves special thanks for always believing in me, and for their support and encouragement. Thank you to all my friends especially Rachel Sims, Leanne Reaney, Michelle Shackleton, Gabriella Schefule and Katherine Horak for reminding me to take breaks, relax and have fun.

Funding was generously provided by the Australian Federal Police, the University of Canberra, the Australian Postgraduate Industry Award, the WJ Weeden Award, the Chelonian Research Foundation, and the Australian Herpetological Society. Genetic samples were collected by myself and also provided by Damien Fordham, Arthur Georges, Nancy FitzSimmons and Anton Tucker. Wildlife case prosecution data was provided by Mike Dore from the Australian Customs Service.
Abstract

Illegal trade of wildlife is a serious and growing crime. One of the greatest challenges in international efforts for policing of the illegal wildlife trade is the provision of evidence. DNA technologies are ideal for providing evidence for wildlife crime because they can be used on degraded and highly processed products to address a wide variety of forensic questions (i.e. species, regional and population-level identification). Theory, techniques and principles from phylogenetics, phylogeography and population genetics provide the fundamental genetic data required for forensic applications. This thesis demonstrates the benefits of merging the disciplines of phylogenetics, phylogeography and population genetics into wildlife DNA forensics – an emergent field that uses DNA technologies to provide evidence for wildlife crime. A DNA forensic identification system was developed using the freshwater turtle *Chelodina rugosa* Ogilby, 1890 as a case study. This species was chosen because a commercial industry is established to supply the pet shop trade.

Application of conservation genetics to freshwater turtles and tortoises was reviewed. General areas where genetic principles and empirical data can be profitably used in conservation planning are identified. Monitoring trade and directing enforcement to protect overexploited turtle populations was identified as one of three crucial future directions for conservation genetics of freshwater turtles and tortoises.

The extent of illegal wildlife trade in Australia was examined using case prosecution data from the Australian Customs service for the period of 1994 to 2007. Of cases prosecuted, 46% were for attempted export and 34% for attempted import. Reptiles were the most targeted (43%), then birds (26%), and native plants (11%). For the majority of prosecutions (70%) the sentence was a fine (70%) that was consistently only a fraction of the market value. I argue that tougher penalties are required to deter criminals from engaging in illegal wildlife trade and initiatives for improved policing (such as DNA technologies) are urgently required.

DNA technologies that have been used to provide evidence for wildlife cases are critically evaluated. Emphasis is placed on the science that is required to form the foundation for forensic applications. Baseline genetic data for species, regional and population level identification of wildlife seizures can be provided by phylogenetic, phylogeography and
population genetic studies, respectively. I advocate greater collaboration of forensic scientists with conservation geneticists to develop research programs that will jointly benefit conservation of traded species and policing of wildlife trade.

Seventeen microsatellite markers were developed specifically for *C. rugosa*. Sixteen of the loci were polymorphic but three of these loci had null alleles. These 17 microsatellite markers were tested for amplification in eight other species with varying success; 98% amplification in *C. burrengandjii*, 72% in *C. canni*, 38% in *C. expansa*, 58% in *C. longicollis*, 67% in *C. mecodii*, 73% in *C. oblonga*, 81% in *C. parkeri*, and 68% in *C. pritchardi*. These microsatellite markers will be useful for population assignment, gene flow, mating systems and hybridization studies in the genus *Chelodina*.

Phylogeography of the Australasian freshwater turtle *Chelodina rugosa* was investigated using 867 bp of the mitochondrial control and ND4 regions. There were two major haplotype lineages for *C. rugosa* consisting of (i) Northern Territory and (ii) New Guinea and northern Queensland extending east to the MacArthur River. The designation of the New Guinea form as a distinct taxon (formerly called *C. siebenrocki*) was refuted. Extensive hybridisation between *C. rugosa* and *C. burrengandjii* in Arnhem Land were found by the mitochondrial analysis and 17 microsatellite loci. A hybrid between *C. rugosa* and *C. canni* was also confirmed. The mitochondrial gene trees and nuclear R35 gene tree (898 bp) were incongruent with respect to the phylogenetic relationships between *Chelodina sp.* (Kimberley) and *C. canni*. Further research using a suite of nuclear markers is required to resolve these phylogenetic relationships and the taxonomic status of *Chelodina sp.* (Kimberley).

Population genetics of *C. rugosa* in the Blyth-Cadel drainages of Arnhem Land was investigated to provide recommendations for their sustainable harvesting. There were no detectable impacts from traditional harvesting. Genetic diversity estimates were similar for harvested and unharvested populations. Levels of genetic structure in the Blyth-Cadel region were low and populations functioned as a metapopulation. I recommend that sustainable harvesting can be conducted, provided that the impacts of pig predation are alleviated and gene flow between sites, through natural or artificial means, is maintained.
A DNA-based forensic identification system for *C. rugosa* was developed. An 898 bp region of the nuclear R35 intron discriminated *C. rugosa* from all other Australian chelid turtles. Individuals with recent hybrids origins between *C. rugosa* and *C. burrungandjii* were identified by 17 microsatellite loci. Geographic sources of specimens could be assigned to three distinct regions by sequencing 867 bp of the mitochondrial DNA: (i) Darwin (Finnis basin), (ii) Arnhem Land, and (iii) eastern Queensland including southern New Guinea. Specimens could not be identified to a source locality at the population-level (using 12 unlinked microsatellite loci) in the Blyth-Cadel basin of Arnhem Land where a commercial trade has been established. Given the isolation and inaccessibility of the Arnhem Land region, this level of identification may be adequate to verify the legality of specimens from the commercial industry.

This thesis merges the disciplines of phylogenetics, phylogeography and population genetics with the growing field of wildlife DNA forensics. It highlights issues for the development of forensic identification systems for wildlife. Emerging technologies on the horizon, such as single nucleotide polymorphisms (SNPs) and pyrosequencing will herald a new era for wildlife forensics. They will complement existing technologies enabling rapid discovery of molecular markers and screening of wildlife seizures. DNA technologies will be an increasingly important tool in international efforts to fight the burgeoning illegal wildlife trade.
Table of Contents

Chapter 1 – General Introduction ... 1
Wildlife crime and the utility of molecular technologies................................. 1
Merging the disciplines of phylogenetics, phylogeography and population genetics into the field of wildlife DNA forensics ... 2
The study species – *Chelodina rugosa*. ... 3
Thesis aims and structure ... 5

Chapter 2 - Genetic issues in freshwater turtle and tortoise conservation. 9
Abstract .. 10
Introduction .. 10
1) Genetic diversity and adaptive potential .. 12
2) Genetic drift .. 15
3) Inbreeding and outbreeding ... 19
4) Selection ... 23
5) Gene flow and management units ... 25
6) Clarifying taxonomy .. 28
7) Insights into species biology .. 30
8) Forensics ... 32
Concluding remarks ... 34
Glossary of genetic terms ... 36

Chapter 3 – Wildlife across our borders: a review of the illegal trade in Australia. 40
Abstract .. 41
Introduction .. 41
Australian wildlife legislation ... 42
Legal wildlife trade across our borders ... 43
Chapter 7 - A genetic perspective on sustainable harvesting of a long-lived species: the Australasian snake-necked turtle *Chelodina rugosa* of Arnhem Land in Northern Australia

Abstract

Introduction

Methods

Results

Discussion

Chapter 8 – DNA-based identification of wildlife to species, region and population of origin: A case study using the Australasian snake-necked turtle *Chelodina rugosa*.

Abstract

Introduction

Methods

Results

Discussion

Chapter 9 – Synopsis

Identifying specimens to the species level

Assigning specimens to geographic provenance

Versatile techniques for conservation and forensic application

Future directions for wildlife DNA forensics

References

98

105

115

116

116

120

125

135

141

142

142

145

152

158

164

166

167

168

169

170
List of Figures

Figure 1.1 Distribution of the Australasian snake-necked *Chelodina rugosa* (shaded) mapped onto the major river drainage basins of Australia and New Guinea. 4

Figure 3.1 The total number of wildlife seizures reported in annual reports of the Department of Environment, Water, Heritage and the Arts from 2002 to 2007 (DEWHA 2002 – 2007). 45

Figure 3.2 The number of major wildlife detections and seizures including attempted imports and exports reported in annual reports of the Australian Customs Service from 2000 to 2007 inclusive (Customs 2000 – 2007). 46

Figure 3.3 The number of prosecutions involving illegal importation and exportation of wildlife in Australia as reported by the Australian Customs Service in annual reports from 1994 to 2007 (Customs 1994 – 2007). 47

Figure 3.4 Types of wildlife involved in prosecutions from 1994 to 2007 including both illegal imports and exports from the Australian Customs Wildlife Prosecutions Database (Australian Customs Service 2008c). 50

Figure 3.5 Types of penalties for wildlife case prosecutions from 1994 to 2007 reported by the Australian Customs Service Wildlife Prosecutions Database (Australian Customs Service 2008c). 54

Figure 6.1 Australian, Papua and West Papua drainage basins showing the 22 basins from which *Chelodina rugosa* samples were collected. 94

Figure 6.2 Australian, Papua and West Papua drainage basins showing the major river basins from which *Chelodina sp.* (Kimberley), *C. burrengandjii* and *C. canni* samples were collected. 95

Figure 6.3 Phylogenetic analysis of *Chelodina rugosa, C. burrengandjii, Chelodina sp.* (Kimberley) and *C. canni* based on 867 bp from the mitochondrial ND4 and control region. 99
Figure 6.4 Major haplotype lineages for samples from turtles that had *Chelodina rugosa* morphology mapped onto the major drainage basins of Australia, Papua and West Papua.

Figure 6.5 Major haplotype lineages for samples from turtles that had the morphology of *Chelodina sp. (C. sp.)* from the Kimberley region and *C. burrengandjii* respectively, mapped onto the major drainage basins of Australia.

Figure 6.6 Parsimony analysis of selected Australian chelid turtles using 898 bp of the nuclear R35 intron

Figure 7.1 Map of the major river basins of northern Australia indicating sampling locations for the population genetic study of *C. rugosa*.

Figure 7.2 Regression of isolation-by-distance for 12 populations of *Chelodina rugosa* based on θ statistics (left) and Rho (right).

Figure 7.3 Regression of isolation-by-distance for *Chelodina rugosa* populations within the Northern Territory based on θ statistics (left) and Rho (right).

Figure 7.4 An unrooted neighbourhood-joining dendogram of nine *Chelodina rugosa* populations in the Northern Territory, Australia, based on Cavalli-Sforza chord measures.

Figure 7.5 Map (on left) showing the posterior probabilities depicted by shading for 271 *C. rugosa* from the Mann/Liverpool and Blyth-Cadel regions of the Arnhem Land Plateau (refer to boxed region of map on right) of belonging to one of the two population clusters identified by Geneland analyses.

Figure 7.6 A Q-plot for the posterior probability of each individual belonging to five clusters (i.e. populations) that were identified by the admixture model in the Structure analysis.

Figure 8.1 Australian, Papua and West Papua drainage basins showing the 22 basins from which *Chelodina rugosa* samples were collected for the mitochondrial phylogeographic study (Figure taken from Chapter 6).
Figure 8.2 Map of the major river basins of northern Australia indicating sampling locations for population assignment analyses of *C. rugosa* (Figure taken from Chapter 7).

Figure 8.3 Phylogenetic analysis of Australasian chelid turtles for 898-bp of the nuclear R35 intron. Node support shown for maximum parsimony is based on 1000 bootstrap replicates and maximum likelihood with 1000 bootstrap replicates.

Figure 8.4 Phylogenetic analysis of *Chelodina rugosa*, *C. burrungandjii*, *Chelodina sp.* (Kimberley) and *C. canni* based on 867 bp from the mitochondrial ND4 and control region (Figure taken from Chapter 6).

Figure 8.5 Major haplotype lineages for samples from turtles that had the morphology of *Chelodina sp.* (*C. sp.*) from the Kimberley region and *C. burrungandjii* respectively, mapped onto the major drainage basins of Australia (Figure taken from Chapter 6).

Figure 8.6 A Q-plot for the posterior probability of each individual belonging to five clusters (i.e. populations) that were identified by the admixture model in the Structure analysis.
List of Tables

Table 4.1 Comparison of genetic markers used for forensic applications. 77

Table 5.1 Characterisation of 17 microsatellite loci for the Australasian turtle, *Chelodina rugosa* for 76 individuals. 84

Table 5.2 Cross-species amplification of *Chelodina rugosa* microsatellite primers for eight congeners. 85

Table 6.1 Locality information for the *Chelodina* samples used in the phylogenetic analysis of the nuclear R35 intron. 96

Table 6.2 Probabilities of samples being a 'pure' species, hybrids or backcrossed individuals based on NewHybrid version 1.1 beta (Anderson and Thompson 2002) analysis for 17 microsatellite loci (Alacs *et al.* 2009). 104

Table 7.1 Measures of genetic diversity among *Chelodina rugosa* populations estimated using 12 microsatellite loci. 123

Table 7.2 Pairwise tests of genetic differentiation for 12 *Chelodina rugosa* populations with 0 (upper diagonal) values and Rho averaging over variance components (lower diagonal) based on 12 microsatellite loci. 126

Table 7.3 The percentage of the microsatellite genetic diversity retained in the Damdam population over 200 years for various constant population sizes under the scenarios of an age of maturity of three and six years respectively. 129

Table 7.4 Percentages of microsatellite genetic diversity retained over 200 years for four *C. rugosa* populations of the Blyth-Cadel River based on computer simulations that account for generation time and overlapping generations. 130

Table 8.1 Samples of Australasian chelid turtles used in the nuclear R35 phylogeny. 142
List of CoAuthorship

List of publications associated with this thesis:

