Evaluation of Enzyme-Linked ImmunoSorbent Assay and Liquid Chromatography-Tandem Mass Spectrometry as Screening and Confirmation Methods for the Detection of Synthetic Cannabinoids

James Grech

Bachelor of Medical Science (UC)

National Centre for Forensic Studies (NCFS)

University of Canberra, ACT 2601

A thesis submitted in partial fulfilment of the requirements for the degree of Bachelor of Applied Science (Honours) at the University of Canberra
Acknowledgements

I would like to take this opportunity to thank those who have assisted me in their own way throughout the duration of this project.

Firstly, I would like to thank Dr Ian Whittall, for his continued guidance after bringing forth such an interesting project. Enough thanks couldn't go to Dr Tamsin Kelly, who has lead with me through the entire project; from big tasks such as instruction on the LC-MS/MS, to the smallest detail like some tricky formatting shortcut.

To the University of Canberra, in particular the National Centre for Forensic Studies for providing me a location and equipment to achieve what I did. A big thank you to the laboratory technical officers at the University of Canberra, Dr Greg Adcock and Shirani Katupitiya, for keeping everything running smoothly throughout the project. To the other students with me in the Honours Room, who always seemed to be able to provide anything that was 'required', a consultation on something about the project or that much required distraction when it was needed. You could provide the best company just by sitting there and saying nothing at all.

I would like to thank my friends and family who have been so understanding of my absences when lab work required most of my time. To my parents who have been supportive throughout the entire time, and just being there to listen when it was needed. Finally, to my uncle, Dr Anthony Tate, for your knowledge of Excel and all things statistics, your endless supply of texts book on any stray topic I desired, and your patience to take the time and help when you could.
Abstract

Synthetic cannabinoids (SCs) have started to become a worldwide drug epidemic since their adaptation to the mainstream drug market in 2008. Numerous detection techniques were employed after the initial realisation that it was a chemical compound, not the innocuous plant matter which provided the psychoactive properties for products such as Spice or ‘K2’. The results indicated a wide range of synthesised homologues designed around the stimulation of the cannabinoid receptors. However, these results were only able to be achieved at the time through the use of instruments such as liquid-chromatography-tandem mass spectrometry (LC-MS/MS) which were not available to all facilities. A cheaper and simple system which still maintained accurate and precise quantitative results was needed to prevent this growing problem.

The initial stage of the research project involved the evaluation of two enzyme-linked immunosorbent assay (ELISA) kits; the SC 3474 kit from Randox Toxicology and the K2 direct ELISA kit by Immunalysis. The chosen SC standards included 18 parent drug and metabolite homologues with some presenting constitutional isomerism. Analysis established the creation of a percent cross-reactivity (%CR) profile, using the acquired standards compared to each ELISA's antibody. For Randox Toxicology, 10 of the 18 SC standards returned %CR scores greater than 40%. However, only five standards returned %CR greater than 40% using the Immunalysis kit, with six returning no value at all.

The following stage implemented a comparative analysis using LC-MS/MS. The LC-MS/MS method included the development of optimised multiple reaction monitoring (MRM) conditions specific for each SC analogue. Subsequent LC conditioning incorporated the use of a gradient elution program for separation of problematic analytes whilst providing a rapid elution for high throughput and resolution. The experimental results using the LC-MS/MS method demonstrated the identification and quantification of all 18 SC analogues. The method was validated with linearity, inter-assay accuracy, precision specificity, and carryover effect, all presenting results within acceptable ranges.

Furthermore, the robustness of both detection techniques was evaluated with the addition of two common adulterants; oleamide and α-tocopherol. The impact on the ELISA was determined both without and with the presence of SCs, measuring a change in each analytes %CR score. Despite the impact of the adulterants on the ELISAs not
being able to be quantified, a definite alteration was witnessed. The specificity of the LC-MS/MS method was evaluated by a change in the accuracy of the SC analyte, and whether it remains within tolerable bias. With the applied method, it was concluded that all 18 SC standards remained within this tolerable range.

The dual assessment of these two techniques allowed for the determination of an ELISA’s ability to be used as a replacement of, or in compliment with, a valid LC-MS/MS method. However, due to the presumptive nature of ELISA analysis, it was concluded that this analysis is acceptable only as a screening method, in conjunction with a confirmatory test such as LC-MS/MS when required.
Table of Contents

Certificate of Authorship.. i
Acknowledgements ... ii
Abstract .. iii
Table of Contents ... v
List of Appendices ... viii
List of Figures .. ix
List of Tables ... x
List of Abbreviations ... xi

Chapter 1: Introduction ... 1
 1.1. Background .. 1
 1.2. Emergence of Designer Drugs ... 1
 1.2.1. Initial Detection of Synthetic Cannabinoids 3
 1.3. Development of Synthetic Cannabinoids .. 4
 1.3.1. Therapeutic Use of Synthetic Cannabinoids 4
 1.4. Synthetic Cannabinoid Classification .. 5
 1.5. Discrepancies in Herbal Mixtures .. 6
 1.6. Pharmacokinetics and Pharmacodynamics ... 6
 1.6.1. Absorption and Distribution .. 6
 1.6.2. Metabolism ... 7
 1.6.3. Pharmacodynamics .. 7
 1.6.4. Side Effects ... 8
 1.6.5. Down-Regulation ... 8
 1.6.6. Tolerance .. 8
 1.7. Popularity .. 9
 1.8. Applied Detection Techniques .. 9
 1.8.1. Thin Layer Chromatography (TLC) ... 9
 1.8.2. Enzyme-Linked ImmunoSorbent Assay (ELISA) 9
 1.8.3. High Performance Liquid Chromatography (HPLC) 10
 1.8.4. Gas Chromatography (GC) ... 10
 1.8.5. Tandem Mass Spectrometry (-MS/MS) ... 11
 1.9. Legislative Control of Synthetic Cannabinoids .. 12
 1.9.1. Legislation in Australia ... 12
 1.9.2. Legislation in the United States of America 15
 1.9.3. Legislation in Europe .. 15
 1.9.4. Legislation in Japan ... 19
 1.10. Trends .. 19
 1.10.1. United State of America ... 19
 1.10.2. Europe ... 19
 1.10.3. United Kingdom ... 20
 1.10.4. Japan ... 20
 1.11. Project Aims ... 22
Chapter 2: Materials and Methods ... 23
2.1. Reagents ... 23
2.2. Equipment and Instrumentation .. 23
2.3. Synthetic Cannabinoid Standards .. 24
2.4. Preparation standards ... 25
 2.4.1. Preparation of PBS ... 25
2.5. Stage 1 – Evaluation of Enzyme Linked ImmunoSorbent Assay (ELISA) kits 26
 2.5.1. Methodology for Randox Toxicology SC3474 ELISA kit 26
 2.5.2. Methodology for Immunalysis K2 direct ELISA kit 27
 2.5.3. Determination of percent cross-reactivity (%CR) 28
 2.5.4. Impact of Adulterants .. 29
 2.5.4.1. Cross reactivity of oleamide and α-tocopherol (Without the Presence of SC) 29
 2.5.4.2. Impact of adulterant SC specimens on ELISA presumptive testing ... 30
 2.5.5. Inter-plate precision of observed absorbance 31
2.6. Stage 2 – Liquid chromatography tandem mass spectrometry (LC-MS/MS) 32
 2.6.1. LC-MS/MS Preparation ... 32
 2.6.2. Mobile Phase Preparation ... 32
2.7. Method Development ... 33
 2.7.1. MS conditions .. 33
 2.7.1.1. Ionisation Source .. 33
 2.7.1.2. Drying Gas Temperature ... 33
 2.7.1.3. Vaporiser Gas Temperature .. 34
 2.7.2. LC Conditions .. 34
 2.7.2.1. Flow rate ... 34
 2.7.2.2. Solvent Type .. 34
 2.7.2.3. Elution Program (Isocratic vs. Gradient) 34
2.8. Optimised MS Conditions .. 34
2.9. Finalised Chromatographic Conditions ... 35
2.10. Method Validation ... 37
 2.10.1. Linearity ... 37
 2.10.2. Lower Limit of Detection and Quantitation 37
 2.10.3. Accuracy and Precision ... 37
 2.10.4. Specificity .. 37
 2.10.5. Carryover Effect .. 38
Chapter 3: Results and Discussion ... 39
3.1. Stage 1 – Evaluation of the ELISA kits .. 39
 3.1.1. Presentation of cross-reactivity using Randox Toxicology ELISA.......... 39
 3.1.2. Presentation of cross-reactivity using Immunalysis K2 direct ELISA 41
 3.1.3. Impact of Adulterants on cross-reactivity ... 43
 3.1.3.1. Randox Toxicology ELISA kit without the presence of SCs 44
 3.1.3.2. Randox Toxicology ELISA kit in the presence of Adulterated SCs . 45
 3.1.3.3. Immunalysis K2 ELISA kit without the presence of SCs 48
 3.1.3.4. Immunalysis K2 ELISA kit in the presence of Adulterated SCs 50
 3.1.4. Inter-plate precision of observed absorbance 54
List of Appendices

Appendix 1: Name and Structure of SC Analogues and Common Herbal Mixture Adulterants ... 1
Appendix 2: Proposed metabolic hydroxylation JWH-018 including mass-to-charge (m/z) [8, 29] ... 2
Appendix 3: Summary of Liquid Chromatography conditions using ElectroSpray Ionisation (ESI). ... 3
Appendix 4: Summary of the following Quantifier and Qualifier Transition information for the five representative SC analytes ... 4
Appendix 5: Chromatogram of all 18 tested SC analytes using an isocratic 50%B elution .. 23
Appendix 6: Influence of the Organic Modifier Percentage on the RT and Resolution using a Gradient Elution Program ... 24
Appendix 7: Linear Regression Calibration Models of the 18 SC Analytes. Weighting of 1/x ... 26
Appendix 8: LC-MS/MS method validation information including retention time (RT), limit of detection (LoD), lower limit of quantification (LoQ) and Specificity Data 32
Appendix 9: Intra- and Inter-assay accuracy and precision data of 18 SCs 33
List of Tables

Table 1.1: SC analogues included in Schedule 9 of SUSMP legislation of 2011........13
Table 1.2: Overview of the Legal Status of SCs..17
Table 2.1: Pipetting schedule for Randox Toxicology ELISA kits26
Table 2.2: Application pattern for each calibrator concentration..........................27
Table 2.3: Design of the concentration of adulterant applied30
Table 2.4: Variable conditions for LC and MS method development33
Table 2.5: Optimised MRM conditions of all SC and adulterant analytes.36
Table 3.1: Randox Toxicology ELISA percent cross-reactivity profile41
Table 3.2: Immunoanalysis ELISA cross-reactivity profile42
Table 3.3: Lower Limits of Detection and Quantification for SC analogues including an Accuracy and Precision Summary ..65
List of Figures

Figure 1.1: Title and structure of eight SC classes with examples 5
Figure 1.2: JWH-015 and JWH-120 m/z information including fragments 12
Figure 2.1: Flow of Analysis of Adulterated SC standards .. 31
Figure 2.2: Gradient elution program to 75%B (including scan periods) 35
Figure 3.1: JWH-122 Concentration curve using Immunalysis ELISA 42
Figure 3.2: Effect of oleamide and α-tocopherol without the presence of SC using a Randox ELISA plate .. 45
Figure 3.3: Impact of adulterants on the cross-reactivity of JWH-018 46
Figure 3.4: Impact of adulterants on the cross-reactivity of JWH-073 47
Figure 3.5: Effect of oleamide and tocopherol without the presence of SC using an Immunalysis ELISA plate .. 50
Figure 3.6: Impact of adulterants on the cross-reactivity of JWH-018 N-pentanoic acid (PA) .. 51
Figure 3.7: Impact of adulterants on the cross-reactivity of AM2201 52
Figure 3.8: Impact of adulterants on the cross-reactivity of JWH-073 53
Figure 3.9: Impact of adulterants on the cross-reactivity of AM2201 6-hydroxyindole (6HI) ... 54
Figure 3.10: Application of various LC/MS ionisation techniques [58]. 58
Figure 3.11: Desorption of ions from the solution [58]. .. 59
Figure 3.12: Chromatogram of AM2201 metabolites using a 75%B isocratic elution. 62
Figure 3.13: Chromatogram of AM2201 metabolites using a 50%B isocratic elution. 62
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>%CR</td>
<td>Percent cross-reactivity</td>
</tr>
<tr>
<td>%CV</td>
<td>Percent coefficient of variance</td>
</tr>
<tr>
<td>#HI</td>
<td>#-hydroxyindole metabolite</td>
</tr>
<tr>
<td>#HP</td>
<td>N-(#-hydroxypentyl) metabolite</td>
</tr>
<tr>
<td>AAI</td>
<td>Aminoalkylindole</td>
</tr>
<tr>
<td>ADR</td>
<td>Adverse drug reaction</td>
</tr>
<tr>
<td>AM-</td>
<td>Alexandros Makriyannis</td>
</tr>
<tr>
<td>CB₁</td>
<td>Cannabinoid receptor type 1</td>
</tr>
<tr>
<td>CB₂</td>
<td>Cannabinoid receptor type 2</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CSA</td>
<td>Controlled Substances Act</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography-mass spectrometry</td>
</tr>
<tr>
<td>HHC</td>
<td>(-)-9-nor-9b-hydroxyhexahydrocannabinol</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>JWH-</td>
<td>John W. Huffman</td>
</tr>
<tr>
<td>LC</td>
<td>Liquid chromatography</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography-mass spectrometry</td>
</tr>
<tr>
<td>LLE</td>
<td>Liquid-liquid extraction</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>-MS/MS</td>
<td>-Tandem mass spectrometry</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>O</td>
<td>Oleamide (with L/M/H, denoting low, medium or high)</td>
</tr>
<tr>
<td>PA</td>
<td>N-pentanoic acid metabolite</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure activity relationships</td>
</tr>
<tr>
<td>SC</td>
<td>Synthetic Cannabinoids</td>
</tr>
<tr>
<td>SIM</td>
<td>Selective-ion monitoring</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>SUSMP</td>
<td>Standard for the Uniform Scheduling of Medicines and Poisons</td>
</tr>
<tr>
<td>SWGDRUG</td>
<td>Scientific Working Group for the Analysis of Seized Drugs</td>
</tr>
<tr>
<td>T</td>
<td>α-Tocopherol (with L/M/H, denoting low, medium or high)</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>THC</td>
<td>Delta-9-tetrahydrocannabinol</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
</tbody>
</table>