PERFORMANCE ANALYSIS IN SOCCER: APPLICATIONS OF PLAYER TRACKING TECHNOLOGY

Submitted by ADAM HEWITT
Bachelor of Applied Science (Human Movement) (Honours)

A thesis submitted in total fulfilment of the requirements for the award of

DOCTOR OF PHILOSOPHY
Supervisor: Dr. Kate Pumpa
Co-Supervisor: Prof. Kevin Thompson
Co-Supervisor: Prof. Keith Lyons

University of Canberra Research Institute for Sport and Exercise
Faculty of Health

University of Canberra, Australia

2016
Abstract

The aim of this thesis was threefold, firstly, to compare current player tracking technology in a single game of soccer. Secondly, to investigate the running requirements of elite women’s soccer, in particular the use and application of athlete tracking devices. Finally, how can game style be quantified and defined.

Study One compared four different match analysis systems commonly used in both research and applied settings: video-based time-motion analysis, a semi-automated multiple camera based system, and two commercially available Global Positioning System (GPS) based player tracking systems at 1 Hertz (Hz) and 5 Hz respectively. A comparison was made between each of the systems when recording the same game. Total distance covered during the match for the four systems ranged from 10 830 ± 770 m (semi-automated multiple camera based system) to 9 510 ± 740m (video-based time-motion analysis). At running speeds categorised as high-intensity running (>15 km·h⁻¹), the semi-automated multiple camera based system reported the highest distance of 2 650 ± 530 m with video-based time-motion analysis reporting the least amount of distance covered with 1 610 ± 370 m. At speeds considered to be sprinting (>20 km·h⁻¹), the video-based time-motion analysis reported the highest value (420 ± 170 m) and 1 Hz GPS units the lowest value (230 ± 160 m). These results demonstrate there are differences in the determination of the absolute distances, and that comparison of results between match analysis systems should be made with caution. Currently, there is no criterion measure for these match analysis methods and as such it was not possible to determine if one system was more accurate than another.

Study Two provided an opportunity to apply player-tracking technology (GPS) to measure activity profiles and determine the physical demands of Australian international level women soccer players. In four international women’s soccer games, data was collected on a total of 15 Australian women soccer players using a 5 Hz GPS based athlete tracking device. Results indicated that Australian women soccer players covered 9 140 ± 1 030 m during 90 min of play. The total distance covered by Australian women was less than the 10 300 m reportedly covered by
female soccer players in the Danish First Division. However, there was no apparent
difference in the estimated VO_{2max}, as measured by multi-stage shuttle tests, between
these studies. This study suggests that contextual information, including the “game
style” of both the team and opposition may influence physical performance in
games.

Study Three examined the effect the level of the opposition had on the physical output
of Australian women soccer players. In total, 58 game files from 5 Hz athlete-tracking
devices from 13 international matches were collected. These files were analysed to
examine relationships between physical demands, represented by total distance
covered, high intensity running (HIR) and distances covered sprinting, and the level
of the opposition, as represented by the Fédération Internationale de Football
Association (FIFA) ranking at the time of the match. Higher-ranking opponents
elicited less high-speed running and greater low-speed activity compared to playing
teams of similar or lower ranking. The results are important to coaches and
practitioners in the preparation of players for international competition, and showed
that the differing physical demands required were dependent on the level of the
opponents. The results also highlighted the need for continued research in the area of
integrating contextual information in team sports and demonstrated that soccer can
be described as having dynamic and interactive systems. The influence of playing
strategy, tactics and subsequently the overall game style was highlighted as playing
a significant part in the physical demands of the players.

Study Four explored the concept of game style in field sports such as soccer. The aim
of this study was to provide an applied framework with suggested metrics for use by
coaches, media, practitioners and sports scientists. Based on the findings of *Studies 1-
3* and a systematic review of the relevant literature, a theoretical framework was
developed to better understand how a team’s game style could be quantified. Soccer
games can be broken into key moments of play, and for each of these moments we
categorised metrics that provide insight to success or otherwise, to help quantify and
measure different methods of playing styles. This study highlights that to date, there
had been no clear definition of game style in team sports and as such a novel
A definition of game style is proposed that can be used by coaches, sport scientists, performance analysts, media and general public.

Studies 1-3 outline four common methods of measuring the physical demands in soccer: video based time motion analysis, GPS at 1 Hz and at 5 Hz and semi-automated multiple camera based systems. As there are no semi-automated multiple camera based systems available in Australia, primarily due to cost and logistical reasons, GPS is widely accepted for use in team sports in tracking player movements in training and competition environments. This research identified that, although there are some limitations, GPS player-tracking technology may be a valuable tool in assessing running demands in soccer players and subsequently contribute to our understanding of game style. The results of the research undertaken also reinforce the differences between methods used to analyse player movement patterns in field sports such as soccer and demonstrate that the results from different systems such as GPS based athlete tracking devices and semi-automated multiple camera based systems cannot be used interchangeably. Indeed, the magnitude of measurement differences between methods suggests that significant measurement error is evident. This was apparent even when the same technologies are used which measure at different sampling rates, such as GPS systems using either 1 Hz or 5 Hz frequencies of measurement. It was also recognised that other factors influence how team sport athletes behave within an interactive system. These factors included the strength of the opposition and their style of play. In turn, these can impact the physical demands of players that change from game to game, and even within games depending on these contextual features. Finally, the concept of what is game style and how it might be measured was examined. Game style was defined as "the characteristic playing pattern demonstrated by a team during games. It will be regularly repeated in specific situational contexts such that measurement of variables reflecting game style will be relatively stable. Variables of importance are player and ball movements, interaction of players, and will generally involve elements of speed, time and space (location)".
Acknowledgements

There are so many people that have contributed along this journey of my PhD. From where it all began at the AIS and the staff at the Department of Physiology, Professor Allan Hahn for giving me my opportunity and Dr. David Pyne and Dr. David Martin for truly inspirational discussions and work they do. To the late Doug Tumilty, your pioneering work with the AIS Men’s and Women’s Soccer program paved the way for me to continue the work you started. Your initial guidance and chats were immense. Adrian Santrac, Head coach of the Australian Women’s Soccer team (2001-2004) who provided an opportunity to apply my skills to an international team. There were many, many late nights reviewing and analysing video but it made me such a better practitioner. Tom Sermanni, Head coach of the Australian Women’s soccer team (2004-2012), your continued support, willingness to help with my ideas and ability to teach me to play cards (albeit badly) provided me with amazing opportunities and friendships from the world of soccer I cherish. Indeed, the entire playing and coaching staff of the “Matildas” from 2002 on my first international tour to my last in 2012 was amazing.

To my supervisors, firstly the late Prof. Robert T Withers, an amazing person. A chance meeting at the AIS and discussion about our joint love of football led to one of the biggest learning curves of my career. It took a little longer than anticipated but the promise to finish the PhD is complete. I am truly lucky to have had the opportunity to work with someone like you. Prof. Keith Lyons, from the moment I walked in to introduce myself at the newly created AIS Performance Analysis Unit, I knew I wanted to work with you in the area of Performance Analysis. A true visionary, I have valued your thoughts and insights throughout the journey. If not for your unwavering support and always being there, I would not be in a position to complete this PhD without you. Professor Kevin Thompson and Dr. Kate Pumpa, University of Canberra, who supported my candidature and provided invaluable feedback in the preparation of my Thesis.
Thank you to Prof. Kevin Norton for your help and input with two of the publications and Prof. Roger Eston who provided the nudge and prompting required to committing to finally completing the thesis.

To my work colleagues at AIS, Port Adelaide Football Club and Adelaide United Football Club, thank you for providing opportunities to share and apply ideas in such fantastic settings.

To my family thank you for your support over the course of the thesis.

Finally, and most importantly to Megan, you have been there throughout this long process. We have done more over the course of this thesis than most do in a lifetime, got married, lived in 2 states and six houses and of course had three beautiful children. This thesis is as much yours as it is mine. Thank you for being there and putting up with me.
Abbreviations

GENERAL

CI confidence intervals
CV coefficient of variation
DOP dilution of precision
ES effect size
FI fatigue index
FIFA Fédération Internationale de Football Association
g grams
GPS global positioning system
HDOP horizontal dilution of position
Hz hertz
km kilometres
km·h⁻¹ kilometres per hour
m metres
m·s⁻¹ metres per second
min minutes
mm millimetres
SD standard deviation
SEE standard error of the estimate
$\dot{V}O_{2max}$ maximum oxygen consumption
y years
Structure of the Thesis

This thesis is presented as a thesis by publication; hence the results components of the thesis have been written as a compilation of (stand-alone) papers arranged into chapters (Chapters 3-6). All four of the papers have been either published and/or submitted for publication in peer-reviewed journals. Declarations of author contributions accompany each of these papers. The components of the thesis include:

Chapter 1: A general introduction including the aims and significance of the thesis, the research questions, and the research context.

Chapter 2: A review of the literature to identify and discuss match and performance analysis methods in soccer, as well as, concepts on principles of play and methodologies used to describe play.

Chapter 3-6: Studies 1-4 in peer-reviewed journal publication format

Chapter 7: Discussion and Conclusions. General discussion, summary and practical applications are presented along with implications for future research.
Publications

The following publications are presented in support of this thesis by publication:

Conference Presentations Arising During Candidature

Table of Contents

Abstract.. i
Student Declaration.. v
Acknowledgements... vii
Abbreviations ... ix
Structure of the Thesis... xi
Publications... xiii
Conference Presentations Arising During Candidature xv
Table of Contents... xvii
List of Tables.. xxi
List of Figures... xxiii

Chapter 1 - Introduction and Overview .. 1
 1.2 Research Aims and Questions.. 3

Chapter 2 - Review of Literature .. 5
 2.1 Performance analysis in sport ... 5
 2.1.1 Match and motion analysis methodologies in soccer 5
 2.1.2 Validity and reliability of match and motion analysis systems in soccer... 6
 2.1.3 Notational analysis .. 7
 2.1.4 Video-based time-motion analysis ... 8
 2.1.5 Semi-automated tracking systems ... 11
 2.2 Global positioning systems ... 13
 2.2.1 Background .. 13
 2.2.2 Applications of GPS as a player-tracking tool.................................... 14
 2.2.3 Validity and reliability of GPS .. 15
 2.3 Physical demands in soccer ... 18
 2.3.1 Movements demands in soccer ... 18
 2.4 Gender differences in physical performance and soccer 19
 2.5 Tactical and technical performance in soccer ... 20
7.1.3 Movement Profiles in Women's Soccer .. 127
7.1.4 Applying Contextual Information in Match Analysis 129
7.1.5 Playing style .. 130
7.2 Practical Applications ... 134
7.3 Conclusion .. 135

References .. 137

Appendices ... 153

9. List of Original Publications arising throughout the candidature and the order they will appear in the appendices: ... 153

9.1 Hewitt, A., Norton, KI, & Lyons, K, 2014, 'Game Style: what is it and how can we measure it?' International Journal of Performance Analysis in Sport (Submitted for publication) .. 153
List of Tables

Table 3-1 Total distance covered, high-intensity running, distance covered by sprinting, low-intensity running, and total running distance throughout the entire game measured with the semi-automatic multiple-camera system (MCS), the video-based time-motion analysis system (VTM), GPS-1 and GPS-2 (mean±s). ... 43

Table 3-2 Correlations and coefficients of variations (CV) between the different match analysis systems for total distance covered, total running distance, walking, low-intensity running, high intensity running, and sprinting. .. 47

Table 4-1 Whole-game locomotor activity profiles of Australian international female soccer players .. 52

Table 4-2 Results of 2006 Women’s Asian Cup, playing formations and total average distance covered by Australian players per match .. 52

Table 5-1 Descriptive performance data for the players involved in the study. 63

Table 5-2 Movement summary data for each half and across the entire game for all game files recorded (n=58) .. 65

Table 5-3 Movement summary data for the three positional categories. 67

Table 6-1 Five moments of play within a game and the key aims within each moment. 87

Table 6-2 Five moments of play within a game and potential metrics within each moment that may contribute to game style. .. 90
List of Figures

Figure 2-1 Offensive and defensive characteristics of attacking and defending play. Gréhaigne et al. (2005)... 27

Figure 3-1 Peak high-intensity running in a 5-min period, the following 5 min, average values of the remaining 5-min periods, and the relative change from peak to the next 5-min period measured with the semi-automatic multiple-camera system (MCS, n=20), the video-based time–motion analysis system (VTM, n=17), GPS-1 (n=18), and GPS-2 (n=13). Data are means± standard deviations. *Significantly different from VTM and GPS-2 (P≤0.001). ≠Significantly different from VTM and GPS-2 (P≤0.008). #Significantly different from all other systems (P≤0.001).. 48

Figure 3-2 Peak velocity measured with the semi-automatic multiple-camera system (MCS, n=18), GPS-1 (n=16), and GPS-2 (n=13). MCS vs. GPS-1 (n=16), MCS vs. GPS-2 (n=13), and GPS-1 vs. GPS-2 (n=12). Data are means±standard deviations. *Significant difference between the two systems: P≤0.001 53

Figure 3-3 Total distance covered, high-intensity running, and sprinting during the first and second half measured with the semi-automatic multiple-camera system (MCS, n=20), the video-based time–motion analysis system (VTM, n=17), GPS-1 (n=18), and GPS-2 (n=13). Data are presented as means±standard deviations. *Significant difference between the first and second half: P≤0.001. .. 54

Figure 3-4 (a) Total distance covered and (b) high-intensity running in 15-min periods measured with the semi-automatic multiple-camera system (MCS, n=20), the video-based time–motion analysis system (VTM, n=17), GPS-1 (n=18), and GPS-2 (n=13). Period 0–15 min is set to 100 and the rest of the 15-min periods are presented as a percentage of the 0–15 min periods. Data are means±standard deviations. *Significant different from the other three systems: P≤0.001. .. 55

Figure 5-1 The average change in distance covered within the different locomotor movement categories across the game when the game time was split into 15 minutes periods [periods 1-6 from left to right]. Standing and walking movement categories have been combined for this analysis. The reference point was the distance travelled in the opening 15 minutes of the game. The numbers
indicate significant change from the time period shown. For example, number 1 indicates the time period is different from the first time period [0-15 min].

Figure 5-2 Difference between the effect of quality of opposition, as determined by FIFA rankings, on three key movement parameters. Higher intensity movement included jogging, running, and sprinting distances while low speed movement included standing and walking. Analysis was conducted using movement distances calculated for halves of all games. Values are shown as mean ± SEM.

Figure 7-1- Analysis and application of analysis of game style