Evaluation of Laser-Induced Breakdown Spectroscopy (LIBS) for the Elemental Profiling of Forensic Evidence

Moteaa Mohamed Anwar El-Deftar

Thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in Applied Science

University of Canberra

September 2014
Abstract

Laser-induced breakdown spectroscopy (LIBS) is an emerging atomic emission based solid sampling technique that has many potential forensic applications. The work presented in this dissertation was aimed at evaluating a range of elemental profiling methods for forensic applications, with a particular focus on LIBS to determine whether this emerging technique can be readily applied to various forms of forensic evidence. In this study, the analytical performance of a commercially available LIBS instrument was evaluated for the elemental profiling of glass, paper, writing ink, inkjet ink, toner, and Cannabis plant material. Different reference standard matrices, which have similar compositions to the selected sample types, were used to calibrate, develop and optimise the analytical methods, taking into consideration accuracy, limits of detection and precision.

Firstly, the LIBS instrument was evaluated for the determination of elemental composition of twenty window glass samples including 14 laminated samples and 6 non-laminated or non-specified samples collected from crime scenes in the Canberra region, Australia. Three standard reference materials (NIST 610, 612, and 1831) were used to assess LIBS figures of merit. The discrimination potential of LIBS for the analysis of architectural window glass samples was compared to that obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray microfluorescence spectroscopy (µXRF), and scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDX). The results showed that, based on the sample set chosen, the elemental analysis of window glass by LIBS provides a discrimination power greater than 97% (> 98% when combined with refractive index data), which was comparable to the discrimination powers obtained by LA-ICP-MS and µXRF.

Document examination is an important forensic discipline, and the legal system regularly needs the knowledge and skills of the scientific expert when questioned documents are involved in criminal or civil matters. Therefore, the evaluation of the analytical performance of LIBS was also conducted on office papers, writing inks, inkjet inks and laser printer toners, which are commonly encountered in forensic casework. The paper sample set analysed in the current thesis consisted of 32 Australian paper specimens originating from the same plant/mill but representing different brands and/or batches. In addition, a total of 131 ink or toner samples were examined that included black and blue ballpoint inks, black inkjet inks, and black laser printer toners originating from several manufacturing sources, models and/or batches. Results
from the LIBS method were then compared against those obtained using more established elemental profiling methods such as LA-ICP-MS and μXRF. LIBS demonstrated detectable and significant differences between different batches of the same brand as well as between different brands of paper, ink and toner samples; and provided comparable discrimination powers for the selected sample sets when compared to those obtained using LA-ICP-MS and μXRF (discrimination of ~ 98.4 – 99.8%, depending on the sample subset under examination).

Finally, the analytical performance of LIBS, as well as that of ICP-MS, LA-ICP-MS and μXRF, was evaluated for the ability to conduct elemental analyses on Cannabis plant material, with a specific investigation of the possible links between hydroponic nutrients and elemental profiles from associated plant material. No such study has been previously published in the literature. Good correlation among the four techniques was observed when the concentrations or peak areas of the elements of interest were monitored. The study demonstrated that ICP-MS, LA-ICP-MS and LIBS are suitable techniques for the comparison of Cannabis samples from different sources, with high discriminating powers being achieved. In addition, for Cannabis samples collected at the same growth time, the elemental profiles could be related to the use of particular commercial nutrients.

Different methods of data analysis were performed over the source of this study in order to investigate relative discrimination powers. The data analysis approach employed was first directed at identifying a set of emission lines, elements and/or isotopes, depending on the applied analytical method and the sample type, and then constructing a set of elemental ratios. The comparison of selected elemental ratios was performed by utilizing a 2- or 3-sigma match criterion (mean value ± 2 or 3 times the standard deviation). Principle component analysis (PCA) was then employed as a second layer of discrimination, in an attempt to reduce the number of variables and to cluster samples into groups. Finally, an analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD) post hoc test at a 95% confidence limit was employed for the remaining indistinguishable pairs.

Overall, it was demonstrated that LIBS is an excellent tool for the elemental profiling of matrices such as glass, paper, writing ink, inkjet ink, laser toners and Cannabis plant material. LIBS displayed good sensitivity and reproducibility. When combined with ease of use, fast analysis times, and low cost, the findings support the incorporation of the LIBS technique into operational forensic laboratories for the elemental analysis of a range of different evidence types.
Acknowledgments

This dissertation would have never been written, much less completed, without the assistance of many persons to whom I am sincerely indebted.

First and foremost I would like to acknowledge God's favours on me, as He is always there and his blessings are always overwhelming me.

In acknowledgment of my feelings of obligation, regard and gratitude to my supervisory panel: Professor Chris Lennard, Dr Simon Foster, Professor James Robertson from the University of Canberra and Dr Naomi Speers from the Australian Federal Police (AFP), I would like to emphasise my indebtedness to their guidance and support throughout this journey. I especially would like to thank Professor Chris Lennard for his indispensable role in sustaining and promoting my endeavours. His efforts in the crystallization of each phase of the work contributed to my ability to pull through difficulties. I owe him the intellectual guidance, enriching observations and the moral sustenance. Throughout, he never spared any effort to provide me with the assistance and reassurance I needed to persevere in my undertaking. He was always available and willing to help me during the several setbacks encountered during the course of writing.

I have to personally thank Kylie Jones, from the AFP, who provided me with the paper, inkjet ink and toner samples analysed in this research. I would also like to thank Dr Stephen Eggins and Leslie Kinsley at the Australian National University (ANU) for their assistance during the LA-ICP-MS analyses undertaken in this study. Thanks also go to all the W J Weeden Scholarship sponsors for granting me the opportunity to undertake this research and to all staff and colleagues at the National Centre of Forensic Studies (NCFS) for providing me with such a great and friendly environment.

Needless to say, I am indebted and grateful, as always, to the unflinching and unfailing help, encouragement, and support of my family, especially my mother, to whom I dedicate every success.
Table of Contents

Abstract ... i
Certificate of Authorship of Thesis .. iii
Acknowledgments ... v
List of Figures .. xv
List of Tables .. xxi
Abbreviations .. xxv

Chapter 1: Introduction and Objectives ... 1
 1.1 Analysis of forensic evidence ... 1
 1.2 The composition, types and forensic examination of glass fragments 3
 1.2.1 Glass raw materials and source of trace elements .. 3
 1.2.2 Principle glass types and applications ... 4
 1.2.3 Glass Examination .. 6
 1.2.3.1 Physical examination ... 6
 1.2.3.1.1 Density .. 7
 1.2.3.1.2 Refractive index ... 8
 1.2.3.2 Element analysis .. 8
 1.3 The composition, manufacture and forensic examination of paper 9
 1.3.1 Paper raw material and sources of trace elements ... 9
 1.3.2 Paper manufacture ... 11
 1.3.2.1 Pulping methods .. 12
 1.3.2.2 Purification and bleaching ... 13
 1.3.2.3 Beating and Finishing .. 13
 1.3.3 Paper examination ... 14
 1.3.3.1 Physical examination ... 14
 1.3.3.2 Microscopic examination ... 15
 1.3.3.3 Element analysis .. 16
 1.4 The composition, types, manufacture and forensic examination of writing inks, inkjet
 inks and laser printer toners ... 16
 1.4.1 The formulation, types and manufacture of writing inks .. 17
 1.4.2 The formulation, types and manufacture of inkjet inks and toners 18
 1.4.3 Forensic examination of writing and printing inks .. 21
1.7.4 Scanning electron microscope ... 21
1.7.3 Laser ablation inductively coupled plasma mass spectrometry (ICP-MS) 22
1.7.2 Inductively coupled plasma mass spectrometry (ICP-MS) 23
1.7.1 Laser ablation mass spectrometry .. 24
1.5 The composition, types and forensic examination of Cannabis plant material 25
1.5.3 Forensic examination of Cannabis plant material .. 26
1.5.2 Types of cannabis products .. 27
1.5.1 Source of inorganic substances in plants .. 28
1.4 Data analysis .. 29
1.4.3 Elemental analysis techniques ... 30
1.4.2 Chemical examination techniques .. 31
1.4.1 Physical examination techniques ... 32
1.3 Instrumentation .. 33
1.2 Data collection ... 34
1.1 Introduction ... 35

1.7 Instrumentation .. 34
1.7.1 Laser-induced breakdown spectroscopy (LIBS) ... 35
1.7.1.1 LIBS principles and considerations ... 36
1.7.1.2 LIBS advantages and limitations .. 37
1.7.1.3 LIBS instrumentation .. 38
1.7.2 Inductively coupled plasma mass spectrometry (ICP-MS) 39
1.7.2.1 ICP-MS principles and considerations .. 40
1.7.2.2 ICP-MS advantages and limitations ... 41
1.7.2.3 ICP-MS instrumentation .. 42
1.7.3 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) ... 43
1.7.3.1 LA-ICP-MS principles and considerations ... 44
1.7.3.2 LA-ICP-MS advantages and limitations ... 45
1.7.3.3 LA-ICP-MS instrumentation ... 46
1.7.4 Scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDX) 47
1.7.4.1 SEM-EDX principles and considerations ... 48
1.6 Data analysis .. 49
1.6.1 Descriptive statistics .. 50
1.6.2 Match criteria for comparison .. 51
1.5 The composition, types and forensic examination of Cannabis plant material 52
1.5.3 Forensic examination of Cannabis plant material .. 53
1.5.2 Types of cannabis products .. 54
1.5.1 Source of inorganic substances in plants .. 55
1.4 Data analysis .. 56
1.4.3 Elemental analysis techniques ... 57
1.4.2 Chemical examination techniques .. 58
1.4.1 Physical examination techniques ... 59
1.3 Instrumentation .. 60
1.2 Data collection ... 61
1.1 Introduction ... 62
1.7.4.2 SEM-EDX advantages and limitations ... 41
1.7.4.3 SEM-EDX instrumentation .. 41
1.7.5 Micro-X-ray fluorescence (μXRF) .. 42
 1.7.5.1 μXRF principles and considerations .. 42
 1.7.5.2 μXRF advantages and limitations ... 42
 1.7.5.3 μXRF instrumentation ... 43
1.8 Research objectives .. 44
 1.8.1 Elemental profiling of glass fragments ... 44
 1.8.2 Elemental profiling of office papers ... 45
 1.8.3 Elemental profiling of writing inks, inkjet inks and toners 45
 1.8.4 Elemental profiling of Cannabis plant material ... 45
 1.8.5 Recommendations ... 46
Chapter 2: Elemental Profiling of Glass Fragments ... 47
 2.1 Introduction ... 47
 2.1.1 Elemental analysis techniques ... 47
 2.1.1.1 Atomic absorption spectroscopy ... 48
 2.1.1.2 Atomic emission spectroscopy ... 48
 2.1.1.3 Inductively coupled plasma based methods ... 49
 2.1.1.3.1 Inductively coupled plasma optical emission spectroscopy 49
 2.1.1.3.2 Inductively coupled plasma mass spectrometry 50
 2.1.1.4 Laser-induced breakdown spectroscopy .. 53
 2.1.1.5 Neutron activation analysis ... 55
 2.1.1.6 X-ray methods .. 55
 2.1.2 Experimental ... 61
 2.2.1 Standards ... 61
 2.2.2 Glass sample set .. 61
 2.2.2.1 Sample description .. 61
 2.2.2.2 Sample preparation .. 61
 2.2.3 Data acquisition .. 63
 2.2.4 Instrumentation ... 64
 2.2.4.1 Refractive index ... 64
 2.2.4.2 Elemental analysis techniques ... 64
 2.2.4.2.1 Laser-induced breakdown spectroscopy (LIBS) 64
3.3 Results and discussion .. 112
 3.3.1 Laser-induced breakdown spectroscopy (LIBS) ... 112
 3.3.1.1 Optimisation of LIBS conditions ... 112
 3.3.1.2 Evaluation of LIBS figures of merit ... 117
 3.3.2 Micro X-ray fluorescence (μXRF) ... 129
 3.4 Conclusions .. 136

Chapter 4: Elemental Profiling of Writing Inks, Inkjet Inks and Laser Toners 139
 4.1 Introduction ... 139
 4.2 Experimental ... 145
 4.2.1 Standards and reagents ... 145
 4.2.2 Sample sets description .. 146
 4.2.3 Sample preparation ... 146
 4.2.4 Instrumentation .. 152
 4.2.4.1 Laser-induced breakdown spectroscopy (LIBS) .. 152
 4.2.4.2 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)..... 152
 4.2.4.3 Micro-X-ray fluorescence (μXRF) ... 153
 4.3 Results and discussion ... 153
 4.3.1 Laser-induced breakdown spectroscopy (LIBS) ... 153
 4.3.1.1 Optimisation of LIBS conditions ... 153
 4.3.1.2 Calibration curves .. 157
 4.3.1.3 Discrimination Study ... 159
 4.3.1.4 Evaluation of the discrimination capabilities of LIBS for the analysis of ballpoint inks ... 159
 4.3.1.5 Evaluation of the discrimination capabilities of LIBS for the analysis of inkjet inks and laser printer toners ... 165
 4.3.2 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 169
 4.3.2.1 Evaluation of the discrimination capabilities of LA-ICP-MS for the analysis of ballpoint inks ... 169
 4.3.2.2 Evaluation of the discrimination capabilities of LA-ICP-MS for the analysis of inkjet inks and toners ... 173
 4.3.3 Micro X-ray fluorescence (μXRF) .. 175
 4.3.3.1 Evaluation of the discrimination capabilities of μXRF for the analysis of ballpoint inks ... 175
4.3.3.2 Evaluation of the discrimination capabilities of μXRF for the analysis of inkjet inks and toners .. 179
4.4 Conclusions .. 180

Chapter 5: Elemental Profiling of Cannabis Plant Material 183
5.1 Introduction ... 183
5.2 Experimental ... 187
 5.2.1 Standards and reagents ... 187
 5.2.2 Growing Cannabis ... 188
 5.2.2.1 Germination ... 188
 5.2.2.2 Growth conditions ... 190
 5.2.3 Sample preparation ... 191
 5.2.4 Instrumental conditions ... 193
 5.2.4.1 Inductively coupled plasma-mass spectrometry (ICP-MS) 193
 5.2.4.2 Laser-induced breakdown spectroscopy (LIBS) 194
 5.2.4.3 Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) 194
 5.2.4.4 Micro-X-ray fluorescence (μXRF) 195
 5.3 Results and discussion .. 196
 5.3.1 Inductively coupled plasma mass spectrometry (ICP-MS) 196
 5.3.1.1 ICP-MS figure of merits ... 196
 5.3.1.2 Evaluation of the discrimination capabilities of ICP-MS for the analysis of plant material .. 200
 5.3.2 Laser-induced breakdown spectroscopy (LIBS) 202
 5.3.2.1 Optimisation of LIBS conditions 202
 5.3.2.2 Evaluation of LIBS figure of merits 205
 5.3.2.3 Evaluation of the discrimination capabilities of LIBS for the analysis of plant material .. 208
 5.3.3 Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 213
 5.3.3.1 LA-ICP-MS figure of merits 213
 5.3.3.2 Evaluation of the discrimination capabilities of LA-ICP-MS for the analysis of plant material .. 215
 5.3.4 Micro-X-ray fluorescence (μXRF) 218
 5.3.4.1 μXRF Optimisation and figure of merits 218
5.3.4.2 Evaluation of the discrimination capabilities of \(\mu \text{XRF} \) for the analysis of plant material

5.3.5 Correlation study

5.4 Conclusions

Chapter 6: Conclusions and Recommendations

References

Appendix

VITA
List of Figures

Figure 1-1: Basic scheme for the forensic examination of glass (adapted from Trejos et al., (2006)). .. 7
Figure 1-2: Basic scheme for the forensic examination of paper. 15
Figure 1-3: Images of Cannabis plants: female (left) and male (right). 28
Figure 1-4: Typical laboratory LIBS instrument that has been used in the current study. ... 37
Figure 2-1: Analyses conducted on each glass sample. .. 63
Figure 2-2: Optimisation of laser power using the NIST 1831 standard. Note that the net peak areas of Al, K and Si were divided by 10, 10 and 100 respectively to achieve similar scaling factors. ... 69
Figure 2-3: Variation in the net peak area for the LIBS emission lines Mg, Na, Si, Sr, and Ti for the NIST 1831 standard versus the detector delay in µs. ... 69
Figure 2-4: Percent relative standard deviation (%RSD) variability with the number of repeat laser shots on the same spot for the NIST 1831 standard... 70
Figure 2-5: Net peak areas evaluated for Al, K, Mg, Na, Si, Sr, and Ti for NIST 1831 versus the laser focusing distance (in mm). Note that the net peak areas for K, Na, Si, and Mg were divided by 10 to achieve similar scaling factors. ... 70
Figure 2-6: Calibration curves for Ba II (493.4 nm), K I (766.49 nm), Sr II (407.77 nm) and Ti II (336.12 nm). .. 73
Figure 2-7: Precision results for NIST 610, NIST 612, and NIST 1831 sample replicates using LIBS element emission line peak areas... 75
Figure 2-8: Precision results for NIST 610, NIST 612, and NIST 1831 samples replicates using LIBS element peak area ratios... 75
Figure 2-9: Precision results for the glass sample set using LIBS element emission peak areas. ... 76
Figure 2-10: Precision results for the glass sample set using LIBS element emission peak area ratios. .. 77
Figure 2-11: Distribution of LIBS elemental ratios utilised for discrimination purposes across the glass sample set. .. 80
Figure 2-12: LA-ICP-MS precision results for NIST 610 replicates measured with and without the use of ^{29}Si as an internal standard. ... 85

Figure 2-13: LA-ICP-MS precision results for NIST 612 replicates measured with and without the use of ^{29}Si as an internal standard. ... 85

Figure 2-14: LA-ICP-MS precision results for NIST 1831 replicates measured with and without the use of ^{29}Si as an internal standard. ... 86

Figure 2-15: LA-ICP-MS precision for (a) Mn, Mg, Sr, Zr, and Ba and (b) element/isotope ratios across the glass sample set with the use of an internal standard. 87

Figure 2-16: LA-ICP-MS elemental ratio distribution across the glass sample set. Note that ratios Mg/Li, Ba/La and Mn/Rb are divided by 1000, 10 and 10, respectively, to achieve proper scaling factors. ... 88

Figure 2-17: µXRF precision results for the glass sample set using element concentrations based on ASAP results. ... 91

Figure 2-18: µXRF precision results for the glass sample set using element ratios. 92

Figure 2-19: µXRF elemental ratio distribution across the glass sample set. Note that the values of ratios Si/Na and K/Mg are divided by 10 and 100, respectively, to achieve proper scaling factors. ... 93

Figure 2-20: SEM-EDX elemental ratio distribution across the glass sample set. 94

Figure 2-21: SEM-EDX precision results across the glass sample set for the six chosen element ratios. .. 95

Figure 3-1: A4 template for paper sampling. ... 111

Figure 3-2: Optimisation of laser power using the in-house matrix standard 3. Note that the net peak areas of Na, Pb and Ti were divided by 10 to achieve similar scaling factors. 113

Figure 3-3: Images of ablation marks left on paper substrate after LIBS at different laser output. .. 114

Figure 3-4: Variation in the net peak area for the LIBS emission lines Al, Mn, Na, Sr, Pb and Ti of in-house standard 3 versus the detector delay in µs. Note that the net peak areas of Na, Pb and Ti were divided by 10 to achieve similar scaling factors. 114

Figure 3-5: Variation in the net peak area for the LIBS emission lines Al, Mn, Na, Sr, Pb and Ti of in-house standard 3 versus the repetition rate in Hz. Note that the net peak areas of Na, Pb and Ti were divided by 10 to achieve similar scaling factors. 115
Figure 3-6: Net peak areas variation for emission lines of Al, K, Mg, Mn, Na, and Sr with the number of repeated laser shots on the same line for the in-house matrix standard 3. ……116

Figure 3-7: Percent relative standard deviation (%RSD) variability with the spot size in µm for the in-house standard 3. ………………………………………………………………………116

Figure 3-8: Calibration curves for Al I (308.22 nm), Ba II (493.4 nm), Cu I (327.36 nm), Mg I (285.21 nm), Mn II (257.61 nm), and Sr II (407.77 nm). ………………………………..120

Figure 3-9: Precision results for in-house matrix standards 1–4 sample replicates using LIBS element emission line peak areas. …………………………………………………121

Figure 3-10: Precision results for the paper sample set using LIBS element emission line peak areas. ………………………………………………………………………122

Figure 3-11: Precision results for the paper sample set using LIBS peak area ratios. ………123

Figure 3-12: Distribution of LIBS elemental ratios utilised for discrimination purposes across the paper sample set. Note that the peak ratio of Al/Sr was multiplied by 10 and that of Ca/Na was divided by 10 to achieve similar scaling factors. ………………………125

Figure 3-13: Results from principal component analysis (PCA) of the LIBS data for brands (a) Australian, (b) Ditto, (c) Olympic, and (d) Reflex, showing differentiation of paper samples produced in different batches. Principle component 1 (PC1) and principle component 2 (PC2) described 99.8% of the total variance in the data. ……………………………..127

Figure 3-14: Principle component plot for the overall paper sample set……………………..128

Figure 3-15: µXRF precision results for the paper sample set using element concentrations based on ASAP results………………………………………………………………130

Figure 3-16: µXRF precision results for the paper sample set using element ratios. …………131

Figure 3-17: µXRF elemental ratio distribution across the paper sample set. Note that the values of ratios Cl/Ca, K/Ca, and Mn/Fe were multiplied by 200, 1000 and 30, respectively, while the ratios Ca/Fe and K/Sr were divided by 20 and 2, respectively, to achieve proper scaling factors…………………………………………………………………………132

Figure 3-18: Results from principal component analysis of the µXRF data for brands (a) Australian, (b) Ditto, (c) Olympic and (d) Reflex, showing differentiation of paper samples produced in different batches. Principle component 1 (PC1) and principle component 2 (PC2) described from 98.9% to 99.8% of the total variance in the data…..134
Figure 3-19: Principle component plot for the overall paper sample set using μXRF. Principle component 1 (PC1) and principle component 2 (PC2) described 99.7% of the total variance in the data. .. 135

Figure 4-1: Preparation of black and blue in-house matrix standards. .. 145

Figure 4-2: The net peak area ratio of the respective signals for the ink and paper (La/Rh) at different laser outputs. .. 155

Figure 4-3: The variation of percent relative standard deviation for the net peak areas obtained for five replicates for the ratio La/Rh measured at different laser outputs .. 155

Figure 4-4: Net peak area variation for ratio La/Rh with the number of repeated laser shots on the same line .. 156

Figure 4-5: Calibration curves for Cu I (327.36 nm), Mg I (285.21 nm), and Ti II (336.12 nm) from the LIBS measurements conducted on the blue in-house ink standards. 158

Figure 4-6: Precision results across the blue ballpoint sample set by LIBS .. 160

Figure 4-7: PCA results of black ballpoint pen ink originating from the same package and between packages of the same brand and model (i.e., Staedtler Stick 430 (F)) 161

Figure 4-8: PCA results of black ballpoint pen inks originated from four brands and different models (e.g., Artline, Bic, Pilot and Paper Mate) ... 162

Figure 4-9: Results from principal component analysis (PCA) on the LIBS data for: (a) 55 black ballpoint ink brands; and (b) 54 blue ballpoint ink brands .. 163

Figure 4-10: The LIBS spectra for a toner sample and its corresponding paper substrate. 166

Figure 4-11: Results from PCA analysis of the LIBS data, showing differentiation of inkjet inks and toner samples from different printer brands. ... 166

Figure 4-12: Calibration curves constructed by LA-ICP-MS for black in-house matrix standards .. 170

Figure 4-13: PCA results for writing ink subsets by LA-ICP-MS: (a) 13 black ballpoint ink brands; and (b) 12 blue ballpoint ink brands .. 172

Figure 4-14: PCA results for inkjet inks and toner samples by LA-ICP-MS .. 174

Figure 4-15: PCA results from the μXRF data, showing differentiation and grouping of samples originated from the same brand and model but different boxes ... 178

Figure 4-16: PCA results from the μXRF data, showing differences within and between ballpoint ink brands for: (a) black ballpoint inks; and (b) blue ballpoint inks............................... 178
Figure 4-17: PCA results for inkjet and toner samples by LA-ICP-MS. The first two components represented 100% of the variation in the data. ... 180
Figure 5-1: Cannabis plants in week 5. ... 191
Figure 5-2: Sample press and accessories used to prepare pellets from the dried and powdered plant material.. 192
Figure 5-3: ICP-MS calibration curves for strontium and manganese. ... 197
Figure 5-4: Distribution of elements utilised for discrimination purposes across the Cannabis samples as measured by ICP-MS. ... 200
Figure 5-5: Results from principle component analysis of the ICP-MS data, showing differentiation and grouping of the plant samples produced from six commercial nutrients. .. 201
Figure 5-6: Intensity of atomic emission line of strontium obtained from NIST 1515 at different laser power percent. .. 203
Figure 5-7: Variation in percent relative standard deviation for the net peak areas obtained for three replicates of NIST 1515 for the emission lines Sr, Al, Ti, Mg, Sc, Ba and Mn measured at different repetition rates. .. 204
Figure 5-8: Percent relative standard deviation (% RSD) variability with changes in the laser spot size in µm for NIST 1515. .. 204
Figure 5-9: Calibration curves for Al I (394.4 nm), Mn II (257.61 nm), and Sr I (460.73 nm) from the LIBS measurements conducted on the four plant reference materials. 206
Figure 5-10: Distribution of LIBS elemental ratios utilised for discrimination purposes across the Cannabis sample set. .. 209
Figure 5-11: PCA results of LIBS data for the 42 Cannabis samples ... 212
Figure 5-12: PCA results of Cannabis samples originating from different sources and collected at week 11. ... 212
Figure 5-13: Distribution of LA-ICP-MS elements utilised for discrimination purposes across the Cannabis sample set. .. 216
Figure 5-14: Principle component plot for the overall Cannabis sample set. ... 217
Figure 5-15: PCA results by LA-ICP-MS for Cannabis samples originating from six different nutrients and collected at week 11 ... 217
Figure 5-16: Evaluation of different analysis modes using the NIST 1515 reference standard
and Cannabis plant material. ...219

Figure 5-17: Variations in μXRF precision results for the NIST 1515 sample replicates for each
selected element and for analysis times from 100 to 800 s. ..220

Figure 5-18: Calibration curves generated from the μXRF data for the elements Cu, Fe, Mn and
P..221

Figure 5-19: PCA results for the μXRF data from the complete Cannabis sample set using five
element ratios: Cl/Zn, K/Fe, Ca/Zn, Mn/Fe, and Cu/Zn..223

Figure 5-20: PCA results from the Cannabis samples collected at week 11.223

Figure 5-21: Manganese distribution across the Cannabis sample set as a comparison of means
for LIBS (peak area), μXRF (concentration percent), ICP-MS and LA-ICP-MS
(concentration). Note that the μXRF concentrations were multiplied by 100 to achieve a
similar scaling factor. ...227

Figure 5-22: Correlation of liquid nutrient manganese concentrations and the corresponding
results for manganese in the Cannabis plant material as measured by (a) ICP-MS, (b)
LIBS, (c) LA-ICP-MS, and (d) μXRF. ...228

Figure X-1: Boron distribution across the Cannabis sample set as a comparison of means for
LIBS (peak area), ICP-MS and LA-ICP-MS (concentration).259

Figure X-2: Rubidium distribution across the Cannabis sample set as a comparison of means
for LIBS (peak area), ICP-MS and LA-ICP-MS (concentration). Note that the LIBS peak
areas were divided by 500 to achieve a similar scaling factor.260

Figure X-3: Strontium distribution across the Cannabis sample set as a comparison of means
for LIBS (peak area), ICP-MS and LA-ICP-MS (concentration). Note that the LIBS peak
areas were divided by 10 to achieve a similar scaling factor.261

Figure X-4: Copper distribution across the Cannabis sample set as a comparison of means for
LIBS (peak area), μXRF (concentration percent), ICP-MS and LA-ICP-MS
(concentration). Note that the μXRF concentrations were multiplied by 200 to achieve a
similar scaling factor. ...262

Figure X-5: Zinc distribution across the Cannabis sample set as a comparison of means for
μXRF (concentration percent), ICP-MS and LA-ICP-MS (concentration). Note that the
μXRF concentrations were multiplied by 400 to achieve a similar scaling factor.263
Table 1-1: Composition of loading materials ... 11
Table 1-2: Classification of nutrients based on their function ... 24
Table 2-1: Comparison of some important parameters of six common techniques for the
elemental analysis of forensic glass samples. Adapted from Almirall and Trejos (2006) .60
Table 2-2: Glass source description for the sample set provided by AFP 62
Table 2-3: Refractive index values and their corresponding standard deviation between
replicates for 34 glass fragments .. 66
Table 2-4: Reference concentrations for the single point calibration standards (NIST 610, 612
and 1831) utilized for quantification and verification purposes. All values are in parts per
million (ppm) ... 74
Table 2-5: Limits of detection (ppm) and precision (% RSD, shown in parentheses) obtained
from the NIST 610, 612, and 1831 standards by LIBS .. 74
Table 2-6: Reproducibility of measured element peak areas and ratios for the NIST 612
replicates over a 7-day period (MS: Mean square, SS: Type III sum of squares, df: degree
of freedom) .. 78
Table 2-7: The discrimination results of peak area ratios utilized for 595 possible pairwise
comparisons measured by LIBS using the 3-sigma rule followed by multivariate analysis
at the 95% confidence level (p < 0.05) .. 82
Table 2-8: List of indistinguishable pairs obtained after combining LIBS results with RI at a
95% confidence limit .. 82
Table 2-9: LA-ICP-MS quantification results using NIST 612 and NIST 1831 calibration
standards, with the use of an internal standard. Mean values and standard deviations are in
parts per million (ppm) ... 84
Table 2-10: LA-ICP-MS limits of detection determined for NIST 610, NIST 612 and NIST
1831. All represented values are in parts per million (ppm) ... 84
Table 2-11: The discrimination results of element/isotope ratios utilized for 595 possible
pairwise comparisons measured by LA-ICP-MS using the 3-sigma rule followed by
multivariate analysis at the 95% confidence level (p < 0.05) .. 88
Table 2-12: List of indistinguishable pairs obtained after combining LA-ICP-MS results with RI at a 95% confidence limit ... 89
Table 2-13: μXRF discrimination results for the element ratios utilized for the 595 possible pairwise comparisons across the glass sample set .. 93
Table 2-14: List of indistinguishable glass pairs obtained after combining μXRF results with RI at a 95% confidence limit .. 94
Table 2-15: SEM-EDX discrimination results for the element ratios utilized for the 595 possible pairwise comparisons across the glass sample set after applying multivariate analysis ... 96
Table 2-16: List of indistinguishable glass pairs obtained after combining SEM-EDX results with RI at a 95% confidence limit .. 97
Table 2-17: A summary of discrimination results achieved for LIBS, LA-ICP-MS, μXRF and SEM-EDX. The number of indistinguishable pairs across the sample set, out of 595 pairwise comparisons, is indicated together with the resulting discrimination power as a percent (shown in parentheses) .. 99
Table 3-1: Actual concentrations spiked for the preparation of the single point calibration standards (standard 1, 2, 3, 4 and 5) used for quantification and verification purposes. All values are in parts per million (ppm) .. 109
Table 3-2: Information on the 33 paper samples provided by the AFP ... 110
Table 3-3: Limits of detection (LODs), in parts per million (ppm), for each emission line and for each calibration standard (standards 1, 2, 3, 4 and 5) .. 121
Table 3-4: The discrimination results for peak area ratios utilized for the 528 possible pairwise comparisons measured by LIBS using the 2-sigma rule followed by multivariate analysis at the 95% confidence level (p < 0.05) .. 128
Table 3-5: μXRF discrimination results for the element ratios utilized for the 528 possible pairwise comparisons across the paper sample set .. 135
Table 3-6: List of indistinguishable paper pairs obtained from the μXRF results at a 95% confidence limit ... 136
Table 4-1: List of tested ballpoint pen inks .. 147
Table 4-2: Description of printed samples .. 151
Table 4-3: The discrimination results for the peak area ratios utilized for the analysis of ballpoint inks by LIBS

Table 4-4: The discrimination results for the peak area ratios utilized for the analysis of ballpoint inks by LIBS

Table 4-5: LA-ICP-MS discrimination results for the element/isotope ratios utilized for the analysis of the ballpoint ink and printed sample sets

Table 4-6: List of indistinguishable pairs obtained from LA-ICP-MS after application of multivariate analysis at the 95% confidence limit

Table 4-7: Discrimination results for µXRF for the ink and toner analyses

Table 4-8: List of indistinguishable blue ballpoint pairs obtained from µXRF after application of multivariate analysis at 95% confidence limit

Table 4-9: A summary of discrimination results achieved for LIBS, LA-ICP-MS, and µXRF. The number of sample pairs not discriminated is indicated, together with the discrimination power as a percentage (number in parentheses)

Table 5-1: Reference concentrations and their corresponding standard deviations for the single point calibration standards (NIST 1515, NIST 1575a, NIST 1572, NIES No.10-a, NIES No.7) utilized for quantification and verification purposes. All values are in parts per million (ppm)

Table 5-2: Liquid nutrients used for growing Cannabis samples in this study

Table 5-3: General ICP-MS conditions

Table 5-4: Percent recovery of elements from the five reference materials ± relative standard deviation

Table 5-5: Total element concentrations in ppm and the respective %RSD values for the six liquid nutrients measured by ICP-MS

Table 5-6: Limits of detection (ppm) for the elements of interest in the NIST 1515, NIST 1575a, NIST 1572, and NIES No.7 standards as measured by LIBS

Table 5-7: ANOVA results for the Cannabis samples analysed by LIBS

Table 5-8: Accuracy results in terms of percent bias for the LA-ICP-MS analysis of the NIST 1515 reference material
Table 5-9: LA-ICP-MS limits of detection determined for NIST 1515, NIST 1575a, NIST 1572 and NIES No.7 and their corresponding correlation coefficients and precision (% RSD). All concentration values are in parts per million (ppm) .. 215

Table 5-10: List of indistinguishable pairs of Cannabis samples found by µXRF (Ca: Canna-Vega, Cy: Cyco, I: Ionic, Hy: Hydro and Out: Outch) .. 224

Table 5-11: Elements used to discriminate Cannabis samples in this study. Note that the elements repeated for at least two of the analytical techniques are highlighted in bold... 229

Table 6-1: Optimised instrumental parameters for the analysis of glass, paper, ballpoint ink, inkjet ink, laser printer toners and Cannabis plant material by LIBS 232
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic absorption spectroscopy</td>
</tr>
<tr>
<td>ACTGAL</td>
<td>The ACT Government Analytical Laboratory</td>
</tr>
<tr>
<td>AES</td>
<td>Atomic emission spectroscopy</td>
</tr>
<tr>
<td>AFP</td>
<td>The Australian Federal Police</td>
</tr>
<tr>
<td>ANOVA</td>
<td>The analysis of variance</td>
</tr>
<tr>
<td>ANU</td>
<td>The Australian National University</td>
</tr>
<tr>
<td>ASAP</td>
<td>An Automated Standardless Analysis Protocol</td>
</tr>
<tr>
<td>ASTM</td>
<td>The American Society of Testing and Materials</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated total reflectance</td>
</tr>
<tr>
<td>CBN</td>
<td>Cannabinol</td>
</tr>
<tr>
<td>CE</td>
<td>Capillary electrophoresis</td>
</tr>
<tr>
<td>CIJ</td>
<td>Continuous inkjet</td>
</tr>
<tr>
<td>CL</td>
<td>Confidence limit</td>
</tr>
<tr>
<td>DOD</td>
<td>Drop-on-demand</td>
</tr>
<tr>
<td>DP</td>
<td>Discrimination power</td>
</tr>
<tr>
<td>DRC-ICP-MS</td>
<td>Dynamic reaction cell inductively coupled plasma mass spectroscopy</td>
</tr>
<tr>
<td>DRIFTS</td>
<td>Diffuse reflectance infrared Fourier transform spectroscopy</td>
</tr>
<tr>
<td>EAWG</td>
<td>The Elemental Analysis Working Group</td>
</tr>
<tr>
<td>EC-ICP-MS</td>
<td>External calibration inductively coupled plasma mass spectrometry</td>
</tr>
<tr>
<td>EDX-XRF</td>
<td>Energy dispersive X-ray fluorescence spectroscopy</td>
</tr>
<tr>
<td>FAAS</td>
<td>Flame atomic absorption spectroscopy</td>
</tr>
<tr>
<td>FDE</td>
<td>Forensic document examiner</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>GC-FID</td>
<td>Gas chromatography-flame ionization detection</td>
</tr>
<tr>
<td>GF-AAS</td>
<td>Graphite furnace atomic absorption spectroscopy</td>
</tr>
<tr>
<td>GLM</td>
<td>General Linear Model</td>
</tr>
<tr>
<td>GRIM</td>
<td>Glass Refractive Index Measurement</td>
</tr>
<tr>
<td>GW</td>
<td>Ground wood</td>
</tr>
<tr>
<td>HA</td>
<td>The alternate hypothesis</td>
</tr>
<tr>
<td>Ho</td>
<td>The null hypothesis</td>
</tr>
<tr>
<td>HP</td>
<td>Hewlett-Packard</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HR-SF-ICP-MS</td>
<td>High resolution sector field inductively coupled plasma mass spectroscopy</td>
</tr>
<tr>
<td>HSD</td>
<td>Honestly significant difference</td>
</tr>
</tbody>
</table>
IMS Ion mobility spectrometer
IRE An internal reflectance element
IRMS Stable isotope ratio mass spectrometry
LA-ICP-MS Laser ablation inductively coupled plasma mass spectrometry
LA-ICP-OES Laser ablation inductively coupled plasma optical emission spectrometry
LDA Linear discriminant analysis
LDI-TOF-MS Laser desorption ionization-time-of-flight secondary ion mass spectrometry
LIBS Laser-induced breakdown spectroscopy
LODS Limits of detection
MDLs The method detection limits
m/z Mass-to-charge
NAA Neutron activation analysis
Nd:YAG Neodymium-doped yttrium aluminium garnet
NIST The National Institute of Standards and Technology
OES Optical emission spectroscopy
PCA Principle component analysis
PFA polytetrafluoroacetae
PIGE Particle induced gamma X-ray Emission
PIXE Particle-induced X-ray emission
ppb Parts-per-billion
ppm Parts-per-million
Py-GC-MS Pyrolysis-gas-chromatography coupled with mass spectrometry
R² Correlation coefficient
RA Reflection-absorption
RI Refractive index
RSD Relative standard deviation
SD Standard deviation
SEM-EDX Scanning electron microscopy with energy-dispersive X-ray microanalysis
STR Short tandem repeat
SRMs Standard reference materials
SR-XRF Synchrotron radiation X-ray fluorescence spectrometry
TAPPI The Technical Association of the Pulp and Paper Industry
THC Delta-9-tetrahydrocannabinol
TLC Thin-layer chromatography
TMP Thermo-mechanical pulp
TOF-SIMS Time-of-flight secondary ion mass spectrometry
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXRF</td>
<td>Total reflection X-ray fluorescence</td>
</tr>
<tr>
<td>UNODC</td>
<td>The United Nations Office on Drugs and Crime</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UV-VIS</td>
<td>Ultraviolet-visible spectroscopy</td>
</tr>
<tr>
<td>WDX-EPMA</td>
<td>Wavelength-dispersive electron probe microanalysis</td>
</tr>
<tr>
<td>WDX-XRF</td>
<td>Wavelength-dispersive X-ray fluorescence</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>μXRF</td>
<td>Energy dispersive micro-X-ray fluorescence spectrometry</td>
</tr>
</tbody>
</table>